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Abstract 

THE EFFECTS OF CHRONIC AND ACUTE PRE-TREATMENT WITH 
METHYLPHENIDATE ON THE RECOVERY OF COGNITIVE FUNCTION 
FOLLOWING EXPERIMENTAL TRAUMATIC BRAIN INJURY IN RATS 

By Katharine Eakin, B.S. 

A Thesis submitted in partial fulfillment of the requirements for the degree of Master of 
Science at Virginia Commonwealth University. 

Virginia Commonwealth University, 2006 

Major Director: Robert Hamm, Ph.D. Professor, Department of Psychology 

Adolescent and young adult males are at a higher risk for traumatic brain injury (TBI) 

compared to the general population. Diagnosis of Attention Deficit Hyperactivity 

Disorder (ADHD) is also more prevalent for males in these age groups. The most 

commonly prescribed medication for ADHD is methylphenidate (MPH). Based on the 

increase in the number of new diagnoses of ADHD and the number of children who 

continue taking MPH into adulthood, it is important to evaluate how chronic or acute 
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MPH administered prior to injury may influence recovery following TBI. In both studies, 

cognitive abilities of male Sprague-Dawley rats were assessed on post-injury using the 

Morris Water Maze. There was no effect of chronic MPH treatment on cognitive 

outcome following TBI. In contrast, acute MPH pre-treatment improved cognitive 

outcome as measured by the MWM. The MPH + injury group reached sham-injury 

levels on days 4 and 5 in the MWM. 
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Introduction 

Human Traumatic Brain Injury 

Traumatic brain injury (TBI) is a serious public health problem in the United 

States (Langlois, Rutland-Brown, & Thomas, 2004). TBI is one of the primary causes of 

mortality and morbidity among children, young adults and the elderly (Thurman, 

Alverson, Browne, Dunn, Guerrero, et al., 1999; Sosin, Sniezek, & Thurman 1996). 

According to the Centers for Disease Control and Prevention (CDC) approximately 1.4 

million Americans sustain a TBI each year (Langlois et al., 2004). This is larger than the 

number of new cases of breast cancer (212,920 cases) (American Cancer Society) and 

HIVIAIDS (43,700) (CDC) combined. In the United States TBI accounts for one-third of 

all injury- related deaths. TBI is also a growing issue for the world population as well. It 

is reported that by 2020 TBI will be the 3'" leading cause of death and disability in the 

world (Murray & Lopez, 1997; Povlishock & Katz, 2005). 

Of the 1.4 million Americans who sustain traumatic brain injuries each year and 

seek medical attention approximately 1.1 million will receive care from an emergency 

department (ED), 230,000 will require hospitalization, and 50,000 people will die. This 

data does not take into account individuals seen in private practice or those who did not 

seek medical attention. National Hospital Discharge Survey data from the CDC indicate 

that 80,000-90,000 individuals become disabled from TBI each year. A conservative 

1 
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estimate is that 5.3 million individuals (2% of the U.S. population) live with long-term 

disabilities due to TBI (Thurrnan, Alverson, Dunn, Guerrero, & Sniezek 1999; Langlois 

et al., 2004). 

The most common causes of TBI are falls, followed by accidents involving motor 

vehicles or traffic accidents. The third most common cause of TBI is violence associated 

with firearms or assault (Langlois et al., 2004). Data compiled by the CDC from ED 

records, hospitalization records, and mortalities associated with TBI from 1995-2001 

indicate that children aged 0-4 years and young adults aged 25-34 have the highest rates 

of TBI. The population with the highest incidence of TBI is children 0-4 years of age. 

Falls are the most common cause of injury for that age group. It is estimated that the 

yearly impact of TBI on children aged 0-14 years in the United States can account for 

approximately 475,000 ED visits, 37,000 hospitalizations, and 27,000 deaths (Langlois et 

al., 2004). 

In almost every age group males are more likely to incur a TBI compared to 

females. The only age group where men and women have similar rates of TBI are 

individuals aged 55-64 (Langlois et al., 2004). Based on average annual numbers of TBI- 

related ED visits, hospitalizations, and deaths combined for males (835,000) and females 

(561,000) of all age groups, males are 1.5 times more likely to suffer a TBI compared to 

females. The difference between the sexes is exaggerated when comparing mortality 

rates. Combining mortality rates across all age groups males are 2.8 times more likely to 

die as a result of TBI compared to females. Additionally in the young adult population 

between the ages of 15-24, mortality rates are 3.6 times higher in males than in females. 
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The increased risk is attributed to a higher incidence of motor vehicle accidents, use of 

firearms, and risk-taking behavior associated with that population (Langlois et al., 2004). 

In addition to the physical and emotional havoc that TBI can wreak on an 

individual, their family, and friends there is also a tremendous financial burden associated 

with TBI. Based on data obtained from the CDC, it is estimated that 56 billion dollars 

are spent in the U.S. each year on the direct and indirect costs associated with TBI 

(Langlois et al., 2004). Of particular concern are the younger victims of TBI who may 

require long-term financial andlor personal care as well as a reduced ability of these 

individuals to provide for their families (Povlishock & Katz, 2005). 

Pre-Injury Treatment and Selective Vulnerability 

The majority of TBI research deals with post-traumatic interventions. However, 

data obtained by investigating pre-injury factors contributes to a better appreciation of the 

whole picture associated with TBI. Understanding how pharmacological alterations in 

brain neurochemistry prior to injury can lead to increased vulnerability or 

neuroprotection is an important component of TBI research. 

In the study by Brown and colleagues (2000) it was hypothesized that pre, post, 

and combined nicotine treatments would improve cognitive outcomes following TBI 

(Brown, Gonzalez, & Kolb, 2000). It was speculated that pre-injury treatment with 

nicotine may offer neuroprotective effects. Nicotine had already been shown to improve 

memory and cognitive performance when administered to patients diagnosed with 

Alzheimer's disease (Samuels & Davis, 1998). Improvements were also observed in the 

cognitive functioning of normal human subjects when nicotine was administered either 
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before or after behavioral training (Warburton, Wesnes, Shergold, & James, 1986). In 

the pre-injury group, nicotine was administered for 1 1 days prior to injury. The lesion 

volume and behavioral analysis showed significant improvement as a result of pre-injury 

treatment with nicotine (Brown et al., 2000). 

In the study by Micale and colleagues, short-term (sub-acute) administration of 

DA agonists for seven days prior to hyperbaric hypoxia was found to reverse the effects 

of hyperbaric hypoxia induced amnesia (Micale, Incognito, Ignoto, Rampello, Sparth, et 

al., 2006). The drugs that were tested include the non-ergoline D2-R agonist ropinirole 

as well as the ergot-derived selective D2-R agonist drugs bromocriptine, cabergoline, 

pergolide and dihydroergocryptine (DHECP). The results from the above study support 

the previous findings of Medico and colleagues, that ropinirole and DHECP were 

effective in ameliorating hyperbaric hypoxia induced amnesia when administered for 

seven-days prior to injury (Medico, DeVivo, Tomasello, Grech, Nicosia, et al., 2002). 

Other studies have utilized acute pre-treatment methodologies to assess post- 

injury cognitive outcome. For instance, in the study by Enomoto and colleagues (2005) 

M ~ ~ '  was administered between 20min and 5min pre-injury and was found to improve 

performance on working and reference memory tasks as measured by the radial arm maze 

(Enomoto, Osugi, Satoh, McIntosh, & Nabeshima, 2005). In another study, 

bromocriptine was administered 15 min prior to injury. Similar to the findings from the 

sub-acute studies above, bromocriptine improved cognitive performance following TBI 

(Kline, Massucci, Ma, Zafonte, & Dixon, 2004). Jiang and colleagues (1994) 

administered the muscarinic antagonist scopolamine prior to injury and found that it 
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significantly reduced spatial memory deficits (Jiang, Lyeth, Delahunty, Phillips, & 

Hamm, 1994). 

Although the majority of TBI research is focused on post-injury treatments, the 

aim of this study is to investigate the selective vulnerability of the brain to pre-injury 

drug-induced alterations in neurochemistry. Cognitive functioning following TBI will be 

evaluated as a function of pre-injury exposure to methylphenidate (MPH), a widely 

prescribed pharmacotherapy used as a treatment for Attention Deficit Hyperactivity 

Disorder (ADHD). Thus it will be determined if chronic or acute pre-treatment with MPH 

increases the vulnerability of the brain to TBI-induced pathology. 

Biomechanics ofHuman Traumatic Brain Injury 

The CDC defines TBI as a sudden physical assault to the brain. TBI can result 

from rapid acceleration or deceleration of the head and neck; blunt trauma to the head 

caused by an object striking the head; or an object penetrating the skull (McIntosh, Smith, 

Meaney, Kotapka, Gennarelli, et al., 1996; Povlishock & Christman, 1994). Holbourn 

(1943) was the first to discover the effects of shearing strains, specifically rotational 

acceleration forces, as a primary cause of predictable injury in the brain. The effect of 

acceleration or deceleration forces on the brain is varied and largely depends on the 

presence of rotational forces applied to the head and neck. Individuals who sustain a 

sagittal (front to back) injury have the best likelihood of recovery, lateral (side to side) 

injuries have the worst percentage for recovery, and oblique injury outcomes are 

somewhere in between. These forces are sufficient to produce brain injury without any 

accompanying contact injury. 
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The mechanical forces that produce TBI can be attributed to either static or 

dynamic loading. In order to assess the severity of a TBI resulting from dynamic 

loading, it is important to account for inertial, acceleration and impact forces. The 

greater the force acting on the head and neck the more damage is inflicted (Gaetz, 2004; 

Ommaya & Gennarelli, 1974). By understanding the biomechanical events associated 

with TBI researchers are able to better replicate injuries in various models. This research 

can ultimately lead to the development of new treatments for TBI. 

Static Loading 

Static loading occurs when forces are applied to an unmoving head over an 

extended time course taking more than 200 milliseconds to develop. This type of force 

generally produces multiple, comminuted, or eggshell fractures of the skull. This type of 

mechanical force does not normally produce the characteristic symptoms commonly 

associated with TBI. For example, symptoms like coma or neurological signs of injury 

are generally not seen unless the force is sufficient to cause deformation of the skull and 

brain tissue (Graham, McIntosh, Maxwell, & Nicoll, 2000). 

Dynamic Loading 

Dynamic loading is the mechanical force that is most commonly associated with 

the sequelae following TBI. Dynamic loading generally occurs in a much faster 

timeframe (less than 50 ms) compared to static loading. Dynamic loading can be further 

classified as either impact or impulsive (Graham et al., 2000; McIntosh et al., 1996). 

Impact loading. Impact loading occurs when a blunt object strikes the head, 

typically producing both contact and inertial related injuries. The amount of damage 
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produced is directly related to the amount of force applied to the skull. Contact forces 

can generate stress waves that radiate through the skull and can cause additional skull 

fractures separate from those at the point of impact (Graham et al., 2000; McIntosh et al., 

1996). 

Impulsive loading. Impulsive loading occurs when the head is set into motion or 

when a moving head is suddenly stopped, either without it striking anything or by contact 

with an object. This type of injury can be created when the head moves indirectly as a 

result of impact to the body in another area (McIntosh et al., 1996). Primary damage to 

the brain parenchyma is caused by nonuniform distribution of pressure and strain 

(Graham et al., 2000; McIntosh et al., 1996). Biological tissue is more resilient to slower 

strains compared to fast strains (Graham et al., 2000). 

Pathobiology of Human Traumatic Brain Injury 

TBI is characterized by two distinct phases, the primary injury phase and a 

secondary injury phase. The primary injury phase is very short, lasting only a few hours 

(McIntosh et al., 1996). The primary injury typically results from lacerations, surface 

contusions, skull fractures, diffuse axonal injury, hematomas, and excitotoxicity (Graham 

et al., 2000; McIntosh et al., 1996; Povlishock & Becker, 1985). The secondary phase is 

a chain of events that occurs following the primary insult but does not manifest clinically 

for a period of time after injury. The damage that occurs during this phase of injury can 

be caused by increased intracranial pressure, swelling, edema, ischemia, hypoxia, 

alterations in the brains neurochemistry and infection (Graham et al. 2000, McIntosh, 

1996). 
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An alternate classification of TBI has been characterized using neuroimaging 

techniques that allow researchers to correlate structural damage to functional outcomes. 

Under this system, researchers adopted the terms focal and difhse to describe the types 

of brain damage. Focal brain damage includes surface contusions and lacerations, 

intracranial hematoma, and increased intracranial pressure. Diffuse brain damage 

includes ischemic injury, diffuse axonal injury (DAI), and swelling (McIntosh et al., 

1996). There are some cases where focal and diffuse pathologies can coexist. This is 

seen more often in severely head-injured patients than in patients who received mild or 

moderate head injuries (Graham et al. 2000; Povlishock & Katz, 2005). Recently a third 

category of generalized abnormalities has been recognized that also affects the mortality 

and morbidity associated with TBI. Generalized changes that occur in the brain include 

neuroexcitation, abnormal agonist-receptor interactions and a multitude of vascular 

irregularities (Povlishock & Christman, 1994; Povlishock & Katz, 2005). 

Focal Injury 

Primary focal injury such as a missile or puncture wound is characterized by the 

presence of contusions or direct disruptions of brain tissue and can include hemorrhaging 

and hematomas in the extradural, subarachnoid, subdural, and intracranial areas (Gaetz, 

2004; Gennarelli, 1993). Secondary damage from focal injuries includes delayed 

neuronal injury to neighboring regions, microvascular injury, focal hypoxic-ischemic 

injury, herniation, and regional and diffuse hypometabolism. Focal injuries produce 

regions of significantly reduced cerebral blood flow creating ischemic conditions that 
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promote inflammation and cytotoxicity in addition to neuronal necrosis (Bullock, 

Maxwell, Graham, Teasdale, & Adams, 1991; Gaetz, 2004). 

Contusions. The presence of a contusion is extremely common in patients with 

focal TBI; however, TBI can occur without the presence of a contusion. Contusions 

cannot be used as an explanation for loss of consciousness at the time of injury or as a 

factor in the maintenance of a comatose state. Contusions are linked to focal seizures 

and/or functional deficits in the language centers of the brain (Ribas & Jane, 1992; 

Povlishock & Christman, 1994). In most cases contusions are the byproduct of 

hemorrhagic lesions within the gray matter or at the gray-white interface and contribute 

to neuronal damage and ischemia (Povlishock & Katz, 2005). Generally "traditional" 

contusions are located on the frontal and temporal poles, the lateral and inferior surfaces 

of the frontal and temporal lobes, and above the Sylvian fissure (Gaetz, 2004; Gennarelli 

& Graham, 1998; Gurdjian, 1976; McIntosh et al., 1996; Povlishock & Christman, 1994). 

They are commonly seen at the apex of gyri and can appear as punctate hemorrhages or 

streaks of hemorrhage usually accompanied by progressive bleeding into adjoining white 

matter (Gennarelli & Graham, 1998). 

There are several types of contusions that include coup contusions that occur 

directly beneath skull fractures, contracoup that occur some distance (not always directly 

opposite) from the fracture, and gliding contusions. Gliding contusions are more 

associated with diffuse brain injuries. The term "gliding contusions" is used to describe 

hemorrhagic lesions in the parasagittal cortex. Gliding contusions are produced by 

cortical gray matter moving in opposition to the underlying white matter causing shearing 
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strains that damage the penetrating vessels located at the graylwhite interface (Adams, 

Doyle, Graham, Lawrence, & McLellan, 1986; Povlishock & Christman, 1994). In 

addition, through the use of MRI's, nonhemorrhagic contusions were identified. These 

lesions are not associated with hemorrhaging but are located on the cortical surface where 

one would expect to see "traditional" contusions. Another type of nonhemorrhagic 

contusion was identified within the subcortical white matter, leaving the superficial 

cortex unharmed. These lesions are correlated with shearing forces, causing diffuse 

axonal injury (Povlishock & Christman, 1994). 

Hematomas. There are several kinds of hemorrhaging that include intracranial 

hematomas, extradural hematoma, and acute subdural hematomas (Gaetz, 2004; 

Gennarelli & Graham, 1998; Povlishock & Christman, 1994). One possible explanation 

for the formation of hematomas is the rupturing of cerebral arterioles caused by the 

shearing and tensile forces generated by the injury (Povlishock & Christman, 1994). 

Intracranial hematomas are located deep within the parenchyma and are associated with 

the rupturing of a blood vessel. Extradural hematomas are associated with a skull 

fracture. Acute subdural hematomas are caused by the rupturing of the bridging veins 

within the dura or cortical arteries (Genneralli & Graham, 1998). Cerebral hematomas 

are usually formed at the time of injury; however, there is evidence of delayed hematoma 

formation that has been observed in patients with injuries ranging from mild to severe 

(Soloniuk, Pitts, Lovely, & Bartowski, 1986; Povlishock & Christman, 1994). 

Hemorrhaging and contusions are associated with secondary ischemic damage and 
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subsequent necrosis from the excess of blood affecting the adjacent tissue (Genneralli & 

Graham, 1 998). 

DzfSuse Injury 

Primary diffuse injury consists of diffuse axonal injury (DAI) and petechial white 

matter hemorrhage. Secondary diffuse injury is associated with delayed neuronal injury, 

microvascular injury, diffuse hypoxic-ischemic injury (HII), and diffuse hypometabolism 

(Povlishock & Katz, 2005). In addition to secondary injuries, delayed pathology 

resulting from a brain injury can lead to DAI characterized by axonal swelling and 

degradation and followed by axonal separation from its downstream segment and 

characteristic formation of a retraction bulb (Povlishock & Christman, 1995). 

Diffuse cell death is among the sequelae commonly observed following TBI and 

can be attributed to apoptotic and necrotic cascades. Necrotic cell death occurs following 

degradation of the cell membrane thereby disrupting the ionic homeostasis leading to the 

rapid destruction of the cytoskeleton and its cytoplasmic components (Povlishock & 

Katz, 2005). Rapid cell death is linked to the activation of the cysteine proteases, calpain 

and caspase, causing degeneration of the membrane, making it more porous, and 

ultimately resulting in the swift demise of the soma. The pathobiology of apoptotic cell 

death is not as well defined and there is some dispute over the cause of the observed 

apoptotic events following TBI. The main theories for the initiation of the apoptotic 

events are excessive neuroexcitation, radical-mediated injury, or a dysregulation of 

calcium homeostasis (Raghupathi, 2004; Raghupathi, Graham, & McIntosh, 2000; 

Yakovlev & Faden, 2004, Povlishock & Katz, 2005). Apoptotic events are mediated by 
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internucleosomal DNA strand breaks with nuclear condensation. It is these changes that 

cause the cell to slowly die (Povlishock & Katz, 2005). 

Diffuse axonal injury. Diffuse axonal injury (DAI) can occur for months post- 

injury. Other aspects commonly associated with DAI are edema, petechial hemorrhages, 

non-hemorrhagic macroscopic white matter lesions and small subarachnoid and 

intraventricular hemorrhages (Povlishock & Katz, 2005). Retraction bulbs and microglia 

scars are the trademark of DAI. DAI was first described by Strich (1956) as the tearing 

of axons throughout the brain caused by shearing forces generated at the time of injury. 

This was thought to be the primary cause of axonal damage following injury because 

when the damaged tissue was visualized postmortem using histological techniques, the 

injured axons appeared reactive and swollen (Strich, 1956; Adams, Graham, Murray, & 

Scott, 1982). However, later research proved that DAI was not the result of immediate 

shearing of axons as was originally thought. It was determined that reactive axons were 

undetectable using histological techniques unless the patient had survived for a minimum 

of 12 hours post-injury (Pilz, 1983). Further.postmortem analysis utilized antibodies 

targeted to neurofilaments at various timepoints post-injury. Focal accumulation of 

neurofilaments was tied to further swelling of the axon cylinder and ultimately leading to 

detachment from its downstream segment at approximately 12 hours post-injury 

(Povlishock and Christman, 1994). 

Generalized Changes 

In addition to changes produced following focal and diffuse brain injury there are 

generalized changes that occur following TBI. Generalized changes include alterations in 
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the permeability of the blood brain barrier (BBB), neurotransmitter responses, C02 

levels, and cerebral blood flow (Povlishock & Christman, 1994). 

Findings from clinical studies have found elevated neurotransmitter levels in the 

cerebral spinal fluid (CSF) of brain-injured patients. Studies have also shown that 

increases in the levels of excitatory amino acids (EAA) such as glutamate and aspartate in 

the extracellular fluid surrounding the contusion area can remain elevated for as many as 

four days post-injury (Povlishock & Christman, 1994). EAA release is determined by the 

severity of the initial injury combined with any secondary events that may have occurred 

prior to stabilization at the hospital (Zauner & Bullock, 1995). Most of the research 

supporting the presence of generalized changes comes from preclinical studies and as 

such will be discussed in greater detail in the experimental injury section. 

Human TBI Outcome 

Despite the distinctions made between diffuse, focal, and generalized injuries, it is 

highly likely that an individual who sustains a TBI will have characteristics of all three. 

An individual's outcome following TBI is related to several factors, including the age of 

the individual, pre-injury abilities, personality, and severity of the injury (CDC, website 

on TBI). Individuals who have sustained a TBI are likely to suffer cognitive and/or 

behavioral impairments following the injury. The most common deficit attributed to TBI 

is cognitive impairment. The CDC estimates that each year 1.1 million or 75% of 

individuals who suffer a TBI are diagnosed with mild brain injury. Patients who are 

diagnosed with mild TBI do not typically lose consciousness; however, cognitive and 

neurological impairments due to diffuse axonal injury are likely (Povlishock & Katz, 
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2005). Even mild TBI can result in the loss of gainful employment. Researchers have 

found that the physical impairment attributed to the injury is not a significant factor when 

determining an individual's ability to return to work. What is significant are the 

cognitive, behavioral, and personality changes that can impact an individual's ability to 

maintain their employment (Wehman, Targett, West, & Kregel, 2005). TBI patients who 

suffer a moderate to severe injury usually experience unconsciousness andlor post- 

traumatic amnesia following TBI (Povlishock & Katz, 2005). Permanent memory loss is 

associated with severe head injuries. TBI can also bring about psychiatric conditions. 

The frequency of mood disorders, such as major depression and anxiety, are significantly 

greater in TBI populations (Jorge & Robinson, 2003). 

Experimental Traumatic Brain Injury 

Models and Mechanics of Experimental TBI 

Experimental brain injury models must generate similar injuries to those observed 

following human TBI. Regardless of the injury outcome measure such as physiological, 

behavioral, or anatomical, the results must be reproducible and quantifiable, clinically 

relevant, and produce a continuum of injury severities (Lighthall, Dixon, & Anderson, 

1989). There is no one model that can replicate the complex mechanisms that can occur 

following human TBI. This necessitated the development and implementation of several 

preclinical models of TBI to properly characterize its underlying pathology. 

There are four models that can be used to investigate the effects of TBI. They are 

physical, computational, cell culture, and animal. All of the models listed have provided 

important data used in the understanding and treatment of TBI. However, to date only 
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animal models are able to represent how a living organism responds to trauma. Animal 

models have been able to reliably reproduce the sequelae associated with human TBI. 

Animal models of injury include dynamic closed head injury, penetration, ablation, 

lesioning, and quasistatic injury. Because the present study utilizes a closed head model 

of head injury, the other models of TBI will not be discussed further. An interesting 

aspect that must be taken into consideration when evaluating experimental data is the 

time course of events following trauma. The pathophysiological mechanisms that occur 

following experimental injury occur in a faster timeframe compared to what is observed 

following human TBI (Zauner & Bullock, 1995). This is also important when evaluating 

the effects of pharmacological treatments in animal models of injury, such as the rate of 

metabolism of the selected drug. 

Fluidpercussion injury. Fluid percussion (FP) injury is the most commonly used 

rodent model of TBI. This model requires that a small diameter (4.8mm) craniotomy be 

made, which exposes the underlying dura mater. The injury is produced by applying a 

brief fluid pulse directly on the surface of the dura via the craniotomy. The injury can be 

delivered either centrally or laterally. Central FP delivers the fluid pulse along the central 

suture midway between bregma and lambda. Lateral FP delivers the injury to the parietal 

lobe midway between the coronal and lambdoid sutures. The FP model is able to 

replicate the cognitive and histological changes similar to those seen in human head 

injury (Dixon, Lyeth, Povlishock, Findling, Hamm, et al., 1987). In rodent models FP 

has been shown to produce cognitive deficits that can last for weeks or months post- 

injury (Hamm, Lyeth, Jenkins, O'Dell, & Pike, 1993). Other aspects of human TBI are 
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also generated following FP injury such as hemorrhaging at the graylwhite interface, 

acute hypertension, bradycardia, increased plasma glucose levels, and suppression of 

electroencephalogram amplitude that is related to the magnitude of the head injury 

(Cortez, Mclntosh, & Noble, 1989; Dixon, Lighthall, & Anderson, 1988). 

Both central and lateral FP injury models are capable of producing cognitive 

deficits via damage to the hippocampus which is a region of the brain that is known to be 

selectively vulnerable in human TBI. This ability is essential for cognitive recovery- 

based research. The two models differ in the type of damage inflicted on the 

hippocampus. Central FP does not produce the same magnitude of cell loss that is 

typically seen following lateral FP; however, it does produce hippocampal damage 

(Hamm et al., 1993; Lyeth, Jenkins, Hamm, Dixon, Phillips, et al., 1990). The memory 

impairment observed following central FP is not believed to be due to cell death but 

instead due to neuronal dysfunction in the hippocampus (Lyeth, et al., 1990; Hayes, 

Jenkins, & Lyeth, 1992). Lateral FP injury is known to cause injury to the CA3 region as 

well as bilateral cell loss in the hilar region of the hippocampus (Cortez et al., 1989; 

Hicks, Smith, Lowenstein, Saint, & Mclntosh, 1993; Smith, Okiyama, Thomas, Claussen, 

& Mclntosh, 1991). Memory dysfunction observed following lateral FP is directly 

related to the amount of cell death in the dentate hilar region (Smi.th, Lowenstein, 

Gennarelli, & Mclntosh, 1994). Because of the similarities lateral FP has with injuries 

observed following human TBI, the lateral FP model was selected for use in the present 

study. 



www.manaraa.com

17 

Controlled cortical impact. Controlled cortical impact (CCI) uses a pneumatic 

impactor to impact exposed brain tissue. The advantage of this model is that the 

biomechanical events contributing to the injury can be quantified. Force, velocity, and 

tissue deformation can be compared to the amount of tissue damage and/or functional 

impairment. The CCI model has been shown to produce cognitive deficits similar to 

those observed following human TBI (Hamm, Dixon, Gbadebo, Singha, Jenkins, et al., 

1992). CCI is able to simulate the neuropathology of severe human head injury more 

effectively than FP injury (Dixon, Clifton, Lighthall, Yaghmai, & Hayes, 1991). 

Hoffman and colleagues developed a bilateral model of frontal cortical contusion that 

was able to reproduce deficits typically observed after frontal lobe damage in humans 

(Hoffman, Fulop, & Stein, 1994). A pneumatically-controlled cortical impactor was used 

to create bilateral contusions of the medial prefrontal cortex in male Sprague-Dawley 

rats. Both CCI models were able to produce cognitive deficits as measured by the Morris 

Water Maze in addition to producing neurological, histological, and physiological deficits 

(Hamm et al., 1992; Hoffman et al., 1994). CCI can also cause direct hemorrhage within 

the cortical gray matter and produce significant edema and damage to the blood brain 

barrier (BBB) (Beaumont, Hayasaki, Marmarou, Barzo, Fatouros, et al., 2001). 

Weight drop model. In this model, a weight is dropped from a predetermined 

distance onto the cranium of the animal. This model is described in detail in the article 

by Marmarou and colleagues (1994). The weight drop model utilizes a free falling brass 

weight that is released in a Plexiglas guide tube and impacted on a stainless steel disk 

affixed on the top the head of the rat. The stainless steel disk is cemented onto the 
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calvaria and functions to prevent the formation of skull fractures. The disk allows for 

higher impact-acceleration levels that have been shown to elicit diffuse brain damage 

(Marmarou, Foda, van den Brink, Campbell, Kita, & Demetriadou, 1994). Observed 

outcomes following weight drop injury are apnea, convulsions, subarachnoid 

hemorrhage, intraventricular hemorrhage, and in severely injured animals there was 

evidence of petechial hemorrhage. This model also produces microscopic damage to 

neurons, axons, astrocytes, and small blood vessels in mild and severely damaged groups. 

Neuronal changes were present in both mild and severely damaged groups and were 

directly related to the severity of the injury. It was demonstrated through the use of this 

model that brain stem damage is not a necessary component of severe head injury (Foda 

& Marrnarou, 1994). 

Pathobiology of Experimental TBI 

Focal. The FP (Dixon et al., 1987, 1988) and CCI models (Lighthall, 1989) are 

capable of eliciting focal contusions and hemorrhaging in various animal models 

including primates, rodent and nonrodent models. In the most severe injuries, 

hemorrhaging can lead to further destruction of the cortical gray matter followed by the 

formation of a cystic cavity surrounded by glial cells. Precontusoinal changes observed 

in animal models of TBI correlate with nonhemorrhagic contusions observed in human 

TBI. Hemorrhaging in the injured areas of the cortex can expand over time and produce 

a larger hemorrhagic mass that can facilitate secondary ischemia and infarction 

(Povlishock & Christman, 1994). 
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Intraparenchymal hemorrhaging can be generated following FP injury but it is 

typically seen only following severe injuries. Like human TBI, the presence of a 

contusion is not always related to mortality and the presence of a contusion does not 

necessarily have a direct correlation with behavioral pathologies. Only when the 

contusion spans a large area of nervous tissue andlor involves a discrete functional area 

does it have a direct relationship to behavioral outcome (Povlishock & Christman, 1994). 

DEffuse. Not all animal models of TBI are able to mimic the pathologies of 

diffuse axonal injury. FP injury and CCI models are only able to produce focally 

confined axonal damage. However, these models have been used to obtain the majority 

of the data regarding traumatically-induced DAI (Povlishock & Katz, 2005). The model 

that most closely replicates the pathology associated with DAI was described in the study 

by Gennarelli and colleagues (1982). In this study nonhuman primates sustained DAI as 

a result of rapid acceleration of the head in one of three directions (sagittal, oblique, or 

lateral) without impact (Gennarelli, Thibault, Adams, Graham, Thompson, et al., 1982). 

However, due to the difficulty and expense associated with nonhuman primate studies, 

new models utilizing optic nerve stretch have been developed (Maxwell, Irvine, Watt, 

Graham, Adams, et al., 1991). 

It was through the use of animal studies that the nature of DAI could be fully 

investigated. Povlishock and colleagues used anterograde tracers in the major conducting 

pathways prior to applying varying levels of experimental injury to determine if the 

axons were disconnecting at the time of injury or if there was another process occurring 

within the axon that was facilitating axonal degradation. Through these experiments it 
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was shown that within 1-2 hours post-injury there was a change in the axon length and an 

accumulation of the anterogradely transported tracer which caused local swelling of the 

axon. Within 3- to 6-hours post-injury the axonal swelling increased to form a retraction 

bulb and ultimately resulted in axonal separation (Cheng & Povlishock, 1988; Erb & 

Povlishock, 1988; Povlishock, Becker, Cheng, & Vaughan, 1983; Povlishock & Becker, 

1985; Povlishock & Kontos, 1985). This proved that axonal injury was not attributed to 

tearing of the axon by external forces at the time of injury, but rather that it was the result 

of injury-induced changes within the axon. In the review article by Povlishock and Katz 

(2005) it was described that while previous research, including their own, has focused 

solely on investigating the effects of injury on large caliber myelinated axons, recent 

findings have shed light on the importance of injury to myelinated and unmyelinated fine 

caliber fibers and how this aspect of injury may be vastly more important to an 

individual's outcome following TBI (Reeves, Phillips, Walker, & Povlishock, 2004). 

Generalized. Following FP injury in animals it has been shown that there is an 

immediate increase in extracellular release of neurotransmitters, including 

catecholamines, acetylcholine, and glutamate (Faden, Demediuk, Panter, & Vink, 1989; 

Hayes et al., 1992; Zauner & Bullock, 1995). Shearing injuries can initiate widespread 

changes in neurotransmitter fbnctioning and ionic homeostasis. These changes set off 

widespread depolarization of cells allowing an influx of ~ a ~ +  and ca2+ ions into the cell 

and an efflux of K+ to the extracellular space (Katayama, Becker, Tamura, & Hovda, 

1990). These cellular changes are related to neuronal and glial swelling that can lead to 

edema and increases in intracranial pressure (ICP) (Zauner & Bullock, 1995). EAA's are 
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known to be elevated following experimental TBI (Faden et al., 1989; Katayama et al., 

1990). There are several excitatory neurotransmitters; however, glutamate is the primary 

neurotransmitter involved in TBI-induced neurotoxicity (Rothman & Olney, 1986). 

Increased release of EAA's such as glutamate and aspartate are released from the 

hippocampus following moderate to severe TBI, with increased neurotransmitter release 

as injury severity increases (Faden et al., 1989; Hayes & Dixon, 1994). Through the use 

of animal studies it has been found that multiple agonist-receptor interactions are 

involved in TBI pathologies. Based on this information it was discovered that treatment 

with receptor antagonists offers a neuroprotective effect. Povlishock and Christman 

(1994) discuss several studies that used EAA antagonists to elicit a neuroprotective 

effect. When multiple EAA antagonists are combined they offer greater neuroprotection 

than when used individually (Jenkins, Lyeth, Lewelt, Moszynski, Dewitt, et al., 1988). 

In brain tissues somewhat affected by reduced regional cerebral blood flow 

(rCBF), glutamate excitotoxicity may be involved in secondary ischemic damage. 

Hypoxia-related neuronal depolarization is related to increased extracellular levels of 

glutamate due to increased release and decreased reuptake of glutamate. High levels of 

glutamate can cause depolarization of cell membranes thereby activating voltage 

dependent ca2' channels that in turn activate the release of more glutamate via a positive 

feedback loop resulting in glutamate neurotoxicity and ultimately cell death (Gennarelli, 

1993). Other amino acid neurotransmitters such as glycine are reported to be involved in 

seizure activity and toxicity from secondary damage (Nilsson, Ronne-Engstrom, Flink, 

Ungerstedt, Carlson, et al., 1994). Glutamate antagonists have been found to be effective 
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in reducing intracranial pressure produced by edema (Schroder, Muizelaar, Bullock, 

Salvant, & Povlishock, 1995). 

Edema is the accumulation of serous fluid within a body cavity or tissue and is a 

significant factor related to secondary injury. Edema can be caused by a multitude of 

events and is the endpoint of several pathological processes. There are two primary types 

of edema, vasogenic and cytotoxic. Vasogenic edemas are related to the BBB. Vasogenic 

edemas can occur at tight junctions of endothelial cells that limit the transfer of 

macromolecules across the BBB. Compromises in this region can facilitate the passage 

of neurotoxic vascular components into the parenchyma (McIntosh et al., 1996). 

Cytotoxic edema is brought on by acute ischemic events and characterized by swelling of 

neurons, glia, and endothelial cells. The lack of oxygen prevents adenosine triphosphate 

(ATP)-dependent ~a~~ and K+ ion transport. ATP levels can be disrupted by ischemic 

reduction in cerebral blood flow or mitochondria1 dysfunction. Sodium accumulates 

within the cells disrupting osmotic equilibrium forcing excessive amounts of water into 

the cell. Intracellular calcium levels are also increased and lead to the activation of 

phospholipases and the subsequent release of arachidonic acid followed by the release of 

oxygen-derived free radicals and infarction (Kandel, Schwartz, & Jessell, 2000). 

Disruption of the BBB can be brought on by several different mechanisms. 

Hypertensive responses following moderate or severe injury are known to disrupt the 

BBB (Hayes & Dixon, 1994). Mild and moderate focal TBI have also been linked to 

alterations in the permeability of the BBB that has been shown to persist for up to 15 

hours post-injury (Cortez et al., 1989). 
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Vascular abnormalities in preclinical research are very similar to those seen 

following human TBI and include impairment or loss of autoregulation (Lewelt, Jenkins, 

& Miller, 1980), impaired physiologic cerebral vascular responsiveness to changes in 

arterial blood gases (Wei, Dietrich, Povlishock, Navari, & Kontos, 1980), and altered 

cerebral blood flow (DeWitt, Jenkins, Wei, Lutz, Becker, et al., 1986; Povlishock & 

Christman, 1994; Yamakami & McIntosh, 1989). Abnormally low levels of CO2 in the 

blood stream have been found following experimental TBI. It is hypothesized that shear 

and tensile strains may produce functional and structural changes in cerebral blood 

vessels (Povlishock & Christman, 1994). 

Biphasic Hypothesis 

The biphasic model of brain injury deals with the sequelae associated with 

secondary injuries and is divided into the acute and chronic phases. The acute phase is 

marked by cerebral hypermetabolism and increases in the extracellular release of several 

neurotransmitters leading to neurotoxicity. The chronic phase is characterized by a 

hypofbnctional state with reduced cerebral metabolism that in humans is maintained in 

the days and weeks following TBI. Experimental therapies to treat injury are designed to 

target either the acute or chronic phase. It is within these two time points that treatments 

can be implemented. Typically treatments that are effective in the excitotoxic acute 

phase are ineffective when administered during the hypofunctional chronic phase and 

vice versa. The time sensitive nature of treatment intervention can make the transitioning 

from acute treatments in preclinical models to clinical use extremely difficult. It is for 

this reason that it is important to investigate not only therapies geared towards post-injury 
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timepoints but also to examine how pre-injury states may influence an individual's 

treatment or recovery. Due to the difficulties stated above regarding the time post-injury 

interventions are administered, having a better understanding of the preexisting 

neurological states could eventually enable therapies to be selected based on the 

individual's specific pathology. 

Remote Functional Depression (WD) is a hypothesis proposed by Feeney (1991) 

to explain the apparent biphasic condition associated with the brain's response to trauma- 

induced injury. RFD is derived from the idea of diaschisis, first proposed by von 

Monakow in 1905. Diaschisis is a term used to describe how focal injury to one area of 

the brain can produce damage to a morphologically separate area via common neural 

pathways. Von Monakow attributed the remote damage to a loss of excitatory input from 

the injured area. It was speculated that spontaneous recovery from this state was due to 

the resolution of the dysfunctional state (von Monakow, 1969). 

Dopamine 

Overview 

Dopamine (DA) is a vitally important neurotransmitter that is involved in several 

processes including learning and memory, executive functioning, planning and execution 

of movement, and hormonal regulation. The primary actions of DA are the activation or 

inhibition of cyclic AMP (CAMP) pathways and modulation of c a 2 '  signaling (Vallone, 

Picetti, & Borrelli, 2000). DA also plays an important role in TBI pathology as well as 

post-injury pharmacological treatments (Zhu, Hamm, Reeves, Povlishock, & Phillips, 
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2000). Of particular interest to this study is methylphenidate (MPH), a DA agonist that is 

used in the treatment of ADHD. 

Synthesis 

The neurotransmitter dopamine is classified as a catecholamine and is located 

primarily in the central nervous system. The neurotransmitter group classified as the 

catecholamines is comprised of dopamine (DA), norepinephrine (NE), and epinephrine 

(EPI). Dopamine is a modulatory neurotransmitter that is both inhibitory and excitatory. 

Dopamine is synthesized in the cytoplasm of dopaminergic neurons. The amino acid 

tyrosine is converted to L-dihydroxyphenylalanine (L-DOPA) by the enzyme tyrosine 

hydroxylase. Tyrosine hydroxylase is the rate-limiting enzyme in the synthesis for DA 

and NE. L-DOPA is converted into DA by the enzyme DOPA decarboxylase (or 

aromatic L-amino acid decarboxylase). Once the DA has been synthesized it is 

transported into synaptic vesicles by a monoamine-H+ transporter (Haines, 1997). 

Metabolism 

Following an action potential, catecholamines that were released into the synapse 

by the presynaptic neuron can be taken back into the presynaptic neuron by the DA 

transporter (DAT) located in the membrane of the presynaptic neuron. DA can then be 

taken back into a synaptic vesicle to be re-used or metabolized by monoamine oxidase 

(MAO) or catechol-0-methyltransferase (COMT) located only in the cytoplasm. When 

catecholamines are broken down by MA0 the result is 3,4,-dihydroxyphenyacetic acid 

(DOPAC). The enzyme COMT breaks down catecholamines into 3-methoxytyramine. 
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When both enzymes act on a catecholamine the result is the formation of homovanillic 

acid (HVA) (3-methoxy-4hydroxy-phenylacetic acid) (Haines, 1997). 

Dopaminevgic Pathways 

The pathways associated with the dopamine system are the corticostriatal, 

mesolimbic, mesocortical, nigrostriatal, and hypothalamic-pituitary (UCSF Medical 

School website). The corticostriatal pathway is comprised of pathways that originate 

from the motor and premotor cortex and the orbitofrontal areas and terminate in the basal 

ganglia. The corticostriatal pathway is not specifically a dopaminergic pathway but it is 

involved in regulating DA functioning within the basal ganglia. The premotor and motor 

cortex projects to the putamen and is involved in planned movements and also regulates 

automatic and involuntary aspects of movement that originate in the putamen. The 

projections that originate in the orbitofrontal cortex and project to the caudate are 

involved in regulating impulsive aspects of behavior that originate within the caudate and 

related structures. The mesolimbic pathway is a dopaminergic pathway that originates in 

the ventral tegmental area (VTA) of the midbrain and projects to the nucleus accumbens 

and amygdala. This pathway is related to emotional behavior, motivation, pleasure, and 

reward. Like the mesolimbic pathway the mesocortical pathway also originates in the 

VTA. From there it projects to the prefrontal cortex, especially the dorsolateral 

prefrontal cortex. The dorsolateral prefrontal cortex is involved in attention, initiative, 

motivation, planning, decision making, working memory, and other higher order 

cognitive functions. The dopamine projections from the mesocortical pathway regulate 

these finctions. Lesions to the mesocortical pathway result in increased DA activity 
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within the mesolimbic tract. Both the mesolimbic and mesocortical pathways work 

together to balance activity within the limbic system. The nigrostriatal pathway involves 

the extrapyramidal motor system and is important in coordination and maintenance of 

movement. This pathway originates from cell bodies in the substantia nigra, particularly 

in the substantia nigra pars compacta, and projects to the dorsal striaturn. This pathway 

ascends via the medial forebrain bundle and then in the internal capsule to innervate the 

caudate nucleus, putamen, and the globus pallidus. The basal ganglia regulate automatic 

aspects of body movement particularly in sequencing actions such as placing one foot in 

front of the other to walk forward in an even and coordinated manner. The 

hypothalamic-pituitary pathway originates in the periventricular area of the hypothalamus 

and projects to the anterior pituitary. Within this pathway the release of DA from the 

hypothalamus regulates the release of prolactin by the pituitary (UCSF Medical School 

website). 

DA is the most abundant catecholamine in the brain, and it is estimated that it 

comprises 80% of the total catecholamine content. However, the total number of DA 

cells in the brain is quite low. The human brain contains roughly 1 million dopaminergic 

cells, a small number compared to the 10 billion cells found within the cortex. DA- 

containing neurons are located predominantly within the more rostra1 parts of the brain 

such as the midbrain, hypothalamus, and olfactory bulbs (Feldman, Meyer, & Quenzer, 

1997). 
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Receptors 

There are five known DA receptor subtypes identified as Dl-D5. These receptors 

are further classified into subfamilies based on biochemical and pharmacological criteria 

and are referred to as Dl-like receptors and D2-like receptors. Dl-like receptors include 

D l  and D5 receptor subtypes, D2-like receptors include D2, D3, and D4 receptor 

subtypes. It is generally accepted that D l  -like and D2-like receptors work in concert in 

regulating DA-mediated actions (Maltais, Gate, Drolet, & Falardeau, 2000). The D 1 

receptor (D 1 -R) and D2 receptor (D2-R) subtypes are the most abundant of the DA 

receptor subtypes. In humans the Dl-R is primarily expressed in the caudate-putamen, 

nucleus accumbens, olfactory tubercle, cerebral cortex, and amygdala. In the substantia 

nigra pars reticulata there has been binding of Dl-R specific ligands although no mRNA 

has been detected. This finding indicates that Dl-R's are synthesized in striatal neurons 

that send their projections to the substantia nigra via the direct nigrostriatal pathway 

(Vallone et al., 2000). The D2-R is mainly located in the caudate-putamen, olfactory 

tubercle, and nucleus accumbens. There is also expression in the substantia nigra pars 

compacta, and VTA. Since these regions give rise to DA neurons, it is believed that the 

D2-R is located on the presynaptic neuron; alternately the D 1-R is exclusively located on 

postsynaptic neurons (Maltais et al., 2000). 

Dopamine receptors in the rat brain. In the rat, the distribution of D l  -R's and D2- 

R's are very similar to what is seen in humans. Rats have strong immunoreactivity for 

DA receptors in the caudate-putamen, nucleus accumbens, olfactory tubercle, substantia 

nigra, periventricular nucleus of the hypothalamus, dentate gyms, and the endopiriform 
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cortex. Some reactivity was detected in the amygdaloid complex including the 

intercalated nuclei, anterior part of the basolateral nucleus, anterior part of the cortical 

nucleus, and supraoptic nucleus (Maltais et al., 2000). Dl and D2 receptors play 

opposing regulatory roles. The D 1-R stimulates the release of cyclic AMP (CAMP) and 

phospholipase C while the D2-R inhibits those events. DA receptors also have a 

modulatory effect on arachidonic acid (AA). The D2-R stimulates the release of AA 

whereas the Dl-R inhibits it. Increases in Ca2+ levels activate the D2-R and promote the 

synthesis of AA (Vallone et al., 2000). TBI-induced increases in intracellular Ca2+ can 

trigger the breakdown of AA into harmful compounds that are associated with neuronal 

death and poor post-injury outcome (McIntosh et al., 1996). 

Dopamine Transporter 

The dopamine transporter (DAT) acts to modulate the activity of DA in the 

synapse by quickly taking up DA following release from a presynaptic neuron. DAT 

levels were assessed four weeks post-injury using a Western blot and it was discovered 

that DAT protein expression was reduced (Yan, Kline, Ma, Li, & Dixon, 2002). Yan and 

colleagues (2002) hypothesize that this reduction in DAT protein is a compensatory 

mechanism to improve DA transmission chronically after TBI by reducing the number of 

reuptake sites. 

Dopamine and TBI 

DA is a key mediator in determining post-traumatic functioning following TBI. 

DA agonists administered in the hypofunctional chronic phase post-injury have been 

shown to improve cognitive outcome following TBI in experimental and clinical settings 
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(Kline, Yan, Bao, Marion, & Dixon, 2000; Gualtieri, Chandler, Coons, & Brown, 1989; 

Whyte, Vaccaro, Grieb-Neff, & Hart, 2002; Zhu et al., 2000). Both the Dl-R and D2-R 

subtypes are involved in memory dysfunction following brain injury. Long-term memory 

dysfunction has been attributed to depleted dopamine levels in the hippocampus (Tang, 

Noda, & Nabeshima, 1997; Tang, Noda, & Nabeshima, 1997a). 

Massucci et al., (2004) examined DA concentrations in the frontal cortex and 

striatum following severe lateral CCI injury in rats. The frontal cortex and striatum were 

analyzed because of their major DA projections. DA concentrations were assessed at 1 

hour and 1 day post-injury. At 1 hour striatal DA concentrations were elevated in both 

the ipsilateral and contralateral sides.. Frontal cortex DA levels were elevated on the 

contralateral side only. At 1 day post-injury frontal cortex levels were elevated on the 

ipsilateral side only (Massucci, Kline, Ma, Zafonte, & Dixon, 2004). In contrast to this 

data McIntosh et al., 1996 demonstrated that moderate level FP injury did increase 

striatal DA concentrations; however, this elevation was only observed at 6 hours post- 

injury and only in the ipsilateral cortex (McIntosh et al., 1996). Assessments were made 

at lh, 6h, 24h, 1 week, and 2 weeks post-injury. DA concentrations in the ipsilateral 

striatum had returned to baseline levels within 24 hours post-injury. It was also reported 

that DA concentrations in the ipsilateral parietal cortex were significantly decreased at 1 

hour post-injury and this decrease was observed at each of the experimental timepoints 

(McIntosh et al., 1996; McIntosh, Yu, & Gennarelli, 1994). There was no change in DA 

concentration in the contralateral parietal cortex. Measurements taken from the 

ipsilateral hypothalamus showed DA concentrations were significantly elevated at 1 hour 
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post-injury and remained elevated at 6 hours and 24 hours post-injury but returned to 

baseline by 1 week. Levels of NE were also increased in the ipsilateral hypothalamus 

although they did not reach significant levels until 6 hours post-injury and were 

significantly elevated at the 24 hour and 1 week timepoints (McIntosh et al., 1996). The 

differences between the Massucci et al., 2004 and McIntosh et al., 1994 & 1996 studies 

could be attributed to differences in injury model and severity. What both of these 

studies do support is the variable role DA plays in brain injury pathology. 

MPH treatment following TBI. MPH works in several DA rich areas of the brain 

and is known to improve cognitive processing speed and abilities. Theses benefits have 

been demonstrated for not only individuals diagnosed with ADHD but also those who do 

not meet the diagnostic criteria for diagnosis with ADHD. When MPH is administered to 

individuals who do not have ADHD they have demonstrated improved performance on 

spatial working memory (Mehta, Owen, Sahakian, Mavaddat, Pickard, et al., 2000) and 

mathematical problem solving tasks (Volkow, Wang, Fowler, Telang, Maynard, et al., 

2004). Because this drug has been utilized in clinical settings to improve cognitive 

processing abilities, there have been numerous experimental and clinical studies that have 

administered MPH to improve cognitive functioning following TBI (Kline et al., 2000; 

Whyte, Hart, Schuster, Fleming, Polansky, et al., 1997; Whyte et al., 2002). 

Numerous studies have shown that MPH in addition to other ADHD treatment 

medication, such as d-amphetamine, are beneficial for improving cognitive functioning 

when administered in the chronic phase following TBI (Kline et al., 2000; McIntosh et 

al., 1996; Whyte et al., 1997). Kline and colleagues found that in rats, treatment with 
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MPH post-injury was effective in improving spatial memory as measured by the Morris 

Water Maze (Kline et al., 2000). In human TBI patients MPH is able to improve 

cognitive processing speed (Whyte et al., 1997). Although there is support for using 

MPH as a treatment for TBI, the Food and Drug Administration has not approved it for 

this use. 

Attention DeJicit Hyperactivity Disorder 

Attention Deficit Hyperactivity Disorder (ADHD) is a neuropsychiatric disorder 

that is commonly diagnosed in childhood (Bolaiios, Barrot, Berton, Wallace-Black, & 

Nester, 2003). According to the Diagnostic and Statistical Manual of Mental Disorders - 

Fourth Edition (DSM-IV), ADHD is characterized by excessive levels of inattentiveness, 

impulsivity, and hyperactivity (APA, 1994). It is estimated that 12% of the U.S. 

population meet the diagnostic criteria for ADHD (Shafritz, Marchione, Gore, Shaywitz, 

& Shaywitz, 2004; Bolaiios et al., 2003). Based on the DSM-IV (1994) there are three 

recognized types of ADHD. These are: Hyperactive Impulsive Type, Predominantly 

Inattention Type, and ADHD Combination Type (APA, 1994). The population of 

individuals with ADHD can be categorized into two groups. The first group is 

individuals who were diagnosed as children, and the second group is those who have 

never been diagnosed. The first group is comprised of mostly males who were 

hyperactive as children. The later group consists of mostly women andlor the inattentive 

subtype (Wasserstein, 2005). 

ADHD is characterized by dysfunction in dopaniinergic transmission in the 

frontal lobes and striatal structures (Filipek, Semrud-Clikeman, Steingard, Renshaw, 
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Kennedy, et al., 1997). Functional imaging studies have indicated reduced metabolic 

function in frontal and striatal regions of individuals with ADHD. (Vaidya, Austin, 

Kirkorian, Ridlehuber, Desmond, et al., 1998; Amen & Carmichael, 1997; Castellanos, 

Giedd, Eckburg, Marsh, Vaituzis, et al., 1994; Lou, Henrikson, & Bruhn, 1984; Lou, 

Henriksen, Bruhn, Borner, & Nielsen, 1989; Sieg, Gaffney, Preston, & Hellings, 1995; 

Zametkin, Nordahl, Gross, King, Semple, et al., 1990). In another study, positron 

emission tomography (PET) detected irregular dopaminergic presynaptic function in 

adult males with ADHD (Ernst, Zametkin, Matochik, Pascualvaca, Jons, et al., 1998). 

MRI studies of ADHD individuals have demonstrated decreased volumes in several brain 

regions including the striaturn and frontal cortex. 

Molecular genetic studies have provided further evidence to support the 

hypothesis that ADHD is related to dopaminergic dysfunction (Swanson, Flodman, 

Kennedy, Spence, Moyzis, et al., 2000; Cook Jr., Stein, Krasowski, Cox, Olkon et al., 

1995; Waldman, Robinson, & Feigon, 1997). In recent studies a correlation has been 

found between ADHD and the 480-base pair DAT1 allele for the DAT (Cook Jr. et al., 

1995; Gill, Daly, Heron, Hawi, & Fitzgerald, 1997; Solanto, 1998; Swanson et al., 2000). 

Other groups have reported increases in the prevalence of the 7-repeat allele for the D4 

gene that has been linked in some studies to novelty-seeking behavior in adults (LaHoste, 

Swanson, Wigal, Glabe, Wigal, et al., 1996; Solanto, 1998). There is speculation that 

individuals with ADHD may have a superfluity of DA autoreceptors, which may explain 

why MPH improves attention in individuals diagnosed with ADHD without producing a 

"high" feeling (Dougherty, Bonab, Spencer, Rauch, Madras, et al., 1999). 
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Stimulant Treatment for ADHD 

The first observation of the beneficial effects of stimulant medication on 

behavioral problems in children was made by Charles Bradley in 1937 (Solanto, 1998). 

Bradley had administered Benzedrine (a racemic mixture of D- and L-amphetamine) for 

the treatment of postpneumoencephalography headaches. Bradley's theory was that a 

stimulant would promote the choroid plexus to produce more cerebral spinal fluid to 

make up for what was taken out during the pneumoencephalography procedure and 

thereby alleviating the headache. The treatment was not effective on the headaches but 

the children and their teachers noticed improvement in school performance while on the 

medication. Bradley did further controlled experiments and showed improved school 

performance following treatment with Benzedrine and other psychostimulants (Bradley, 

1950; Bradley, 1937; Brown, 1998). 

Today the majority of individuals who are diagnosed with ADHD are prescribed 

stimulant medication to manage their symptoms. Over the years, the number of children 

treated with stimulant ADHD medication has increased dramatically from 300,000 in 

1974 to 1.5 million in 1995 (Safer, Zito, & Fine, 1996). It is estimated that 90% of 

children diagnosed with ADHD in the United States are prescribed MPH (Bolaiios et al., 

2003; Zito, Safer, dos Reis, Gardner, Boles, et al., 2000). MPH and dextroamphetamine 

are the most typical pharmacological treatments for ADHD (Rappley, 2005; Solanto, 

1998). 
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Methylphenidate 

History 

MPH is a central nervous system stimulant and is currently approved by the Food 

and Drug Administration as a treatment for ADHD and narcolepsy (Challman & Lipsky, 

2000). MPH was first synthesized in 1944 and was marketed as Ritalin@ in the 1960's 

by Ciba-Geigy Pharmaceutical Company. In 1956 the Physicians Desk Reference 

indicated MPH for use as a treatment for lethargy, depressive states, disturbed senile 

behavior, psychosis associated with depression, and narcolepsy (Leonard, McCartan, 

White, & King, 2004). MPH was also used as an analeptic to reverse barbiturate- 

induced coma (Challman & Lipsky, 2000; Wax, 1997). In 1971 there was an epidemic of 

MPH abuse in Sweden, which prompted the United States to classify MPH as a schedule 

I1 controlled substance under the Drug Enforcement Agency classification system (Diller, 

1996). 

Pharmacokinetics 

Methylphenidate is a cyclized derivative of amphetamine with 2 chiral centers 

(Challman & Lipsky, 2000; Teo, Stirling, Thomas, & Khetani, 2003). Early preparations 

of the drug were comprised of an 80:20 mixture of the erythro- and threo-racemates. 

Further research showed that while both racemates were equipotent in producing 

hypertensive effects and toxicity, only the threo-enantiomers were found to have central 

nervous system stimulant activity (Challman & Lipsky, 2000; Teo, Stirling, Hoberman, 

Christian, Thomas, et al., 2003a). The d and 1-threo-methylphenidate enantiomers 
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comprise current preparations of the drug in a racemic mixture (Challman & Lipsky, 

2000; Ding, Fowler, Volkow, Dewey, Wang, et al. 1997; Teo et al., 2003). 

Pharmacological Effects 

MPH is a psychostimulant that is pharmacologically distinct from amphetamine. 

Psychostimulants can be characterized based on whether their activity is attenuated by 

pre-treatment with reserpine. Reserpine is a drug that disrupts vesicular release by 

depleting the vesicular stores of catecholamines (Leonard, McCartan, White, & King, 

2004). Behavioral effects of amphetamines are not affected by pre-treatment with 

reserpine because amphetamines release cytosolic not vesicular catecholamine reserves. 

MPH activity is impaired by reserpine indicating that MPH interacts with catecholamines 

stored in the synaptic vesicles (Leonard et al., 2004). The precise mechanisms by which 

MPH treatment enables individuals to reduce hyperactivity and to focus and sustain their 

attention over long periods of time have not been fully elucidated (Matochik, Liebenauer, 

King, Szymanski, Cohen, et al., 1994). However, on a molecular level the action of MPH 

is clearer. MPH is known to have direct effects on the neurotransmitters dopamine, 

norepinephrine, and to some extent serotonin (Challman & Lipsky, 2000); indirectly 

MPH has been shown to affect levels of acetylcholine (ACh) (Leonard et al., 2004; 

Acquas & Fibiger, 1996). MPH administration also alters endocrine functioning, glucose 

metabolism, cerebral blood flow, and expression of immediate early genes (IEGs) 

(Leonard et al., 2004). 

Dopaminergic activity. MPH is a noncatecholamine sympathomimetic and 

functions as an indirect dopaminergic agonist (Teo et al., 2003). MPH increases 
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extracellular dopamine levels by binding to the dopanline transporter (DAT) thereby 

blocking the reuptake of DA by the presynaptic neuron, allowing DA to remain in the 

synapse longer (Challman & Lipsky, 2000; Hurd & Ungerstedt, 1989; Volkow, Wang, 

Fowler, Gatley, Logan, et al., 1998a). Volkow and colleagues (1998a), using positron 

emission tomography, determined that at therapeutic levels MPH blocked more than half 

of the brain's DAT's. In humans the brain regions most affected by MPH are the 

prefrontal cortex, hippocampus, striatum, globus pallidus, subthalamic nucleus, and 

substantia nigra with the highest concentration of DA found in the striatum (Moll, 

Heinrich, Trott, Wirth, & Rothenberger, 2000; Mehta et al., 2000; Volkow, Ding, Fowler, 

Wang, Logan, et al., 1995). In the rat, the brain regions affected by MPH administration 

are the striatum, nucleus accumbens, olfactory tubercle, and prefrontal (or prelimbic) 

cortex (Challman & Lipsky, 2000). 

Other neurotransmitters. In vitro studies indicate MPH has a high binding affinity 

for NE transporters (Kuczenski & Segal, 1997; Gatley, Pan, Chen, Chaturvedi, & Ding, 

1996). Kuczenski and Segal(1997) showed hippocampal levels of NE were elevated 

following MPH administration. Using glucose metabolism as a measure of MPH's 

activity within different brain regions, Volkow and colleagues (1998a) found that glucose 

metabolism in the cerebellum was increased following MPH treatment. Typically, 

MPH's effect on glucose metabolism is attributed to activation of D2-R's; however, the 

cerebellum does not contain D2-R's. It is postulated that the cerebellar increases in 

glucose metabolism are due to activity on NE (Volkow et al., 1998a; Leonard et al., 

2004.) 
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MPH has been shown to indirectly increase levels of ACh in the prefrontal cortex 

via stimulation of the D 1 -R's (Acquas & Fibiger, 1996; Leonard et al., 2004). In general, 

ACh levels are increased by Dl-like receptor activation, whereas D2-R activation 

decreases ACh release (Berlanga, Simpson, & Alcantara, 2005). Cholinergic 

interneurons in the striatum express both D5 and D2 receptors. These interneurons are 

important in associative learning as well as planning and executing movement. It has 

also been reported that the D 1-like and D2-like receptors can have a synergistic effect 

that is linked to synaptic plasticity and learning (Kashihara, Ishihara, Akiyama, & Abe, 

1999; Silkis, 200 1). 

Regional Brain Glucose Metabolism . 

Volkow and colleagues (1998a), used ["c] raclopride and 2-deoxyglucose (2DG) 

to measure D2-R density and brain metabolism respectively. It was reported that regional 

glucose metabolism was differentially affected by the density of D2-R's. Regions such 

as the frontal and temporal cortices showed elevated metabolism if the individual had 

higher levels of D2-R's whereas individuals with low levels of D2-R's had lower levels 

of metabolism. These findings indicate that the effect MPH has on the brain depends in 

part on the state of the dopaminergic system (Leonard et al., 2004). In a separate study 

by Volkow, Fowler, Ding, et al., (1998) glucose metabolism was compared to baseline 

levels following either one or two intravenous injections of MPH. The single dose of 

MPH significantly reduced glucose metabolism as measured by 2DG. Metabolic activity 

was attenuated in the hippocampus as well as in the frontal, parietal, and occipital 

cortices. Following the second injection of MPH these same brain regions expressed 
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increased levels of glucose metabolism above baseline values (Volkow, Fowler, Ding, et 

al., 1998). 

Regional Cerebral Blood Flow 

The effects of MPH on regional cerebral blood flow (rCBF) have been 

investigated in individuals who do not have ADHD (Mehta et al., 2000), those who have 

been diagnosed with ADHD and are treated with MPH (Schweitzer, Lee, Hanford, 

Tagamets, Hoffman, et al., 2003; Schweitzer, Lee, Hanford, Zink, Ely, et al., 2004), and 

individual's who have been diagnosed with ADHD and have not received treatment (Lee, 

Kim, Kang, Lee, Kim, et al., 2005; Kim, Lee, Cho, & Lee, 2001). The reported effects of 

rCBF following treatment with MPH are varied. Several studies have indicated that 

rCBF is altered in individuals diagnosed with ADHD (Kim et al., 2001; Spalletta, Pasini, 

Pau, Guido, Menghini, et al., 2001). It is speculated that MPH treatment normalizes 

blood flow to these regions. This is supported by reports that indicate MPH acts on brain 

regions that are task-specific (Mehta et al., 2000). In contrast, reports by Schweitzer and 

colleagues (2004) indicate that MPH does not normalize task-related activity in ADHD 

individuals. They hypothesize that improved performance on cognitive tasks is due to 

enhanced filtering of non-relevant stimuli via MPH's action on DA release in the 

prefrontal cortex (Schweitzer et al., 2004). 

Most studies have observed reductions in rCBF the prefrontal cortex (Lee et al., 

2005; Mehta et al., 2000; Schweitzer et al., 2003 & 2004), parietal cortex (Lee et al., 

2005; Mehta et al., 2000; Szobot, Ketzer, Cunha, Parente, Langleben, et al., 2003), and 

motor cortex (Mehta et al., 2000; Schweitzer et al., 2004) following treatment with MPH. 
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However, it was reported by Kim et al., (2001) that rCBF in the prefrontal cortex 

increased following treatment with MPH and there was no change in blood flow to the 

parietal, occipital, temporal, or cerebellar areas. Increases in rCBF have been reported in 

the thalamic nuclei (Kim et al., 2001; Schweitzer et al., 2004) and basal ganglia (Kim et 

al., 2001; Lou, Henriksen, & Bruhn, 1984). 

Endocrine Function 

MPH administration decreases prolactin release via activation of the 

hypothalamic-pituitary pathways and increases the secretion of growth hormones. There 

have been conflicting reports regarding what, if any, effects MPH has on cortisol levels. 

According to Brown (1 977) MPH administration does not increase cortisol levels. 

Alternatively, Joyce and colleagues did observe increases in cortisol levels (Joyce, 

Donald, Nicholls, Livesey, & Abbott, 1986) ACTH levels were also increased following 

administration of MPH. Significant increases in both systolic and diastolic'blood 

pressure (BP) were found following MPH administration. The changes observed in BP 

as well as heart rate were varied across individuals (Volkow, Fowler, Ding, et al., 1998). 

Immediate Early Gene Expression 

It has been shown that MPH can effect the expression of the immediate early 

genes (IEG) c-fos and zij268. These IEG's were significantly upregulated following a 

single lOmg/kg dose of MPH to 35 day-old rats 30 min prior to radiograph localization. 

In contrast, daily treatment with 2mg/kg, Srnglkg, or 10mgIkg of MPH for 8 days was 

shown to significantly attenuate expression of c-fos and zzf268. Tissue samples were 

taken at 30min post-injection on the final day of treatment. Similar to these findings 
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Chase and colleagues (2002) found that administration of 10mgIkg MPH for 14 days 

significantly attenuated the expression of cTfos expression in the striatum (Chase, Brown, 

Carrey & Wilkinson, 2003). 

Brandon and Steiner (2003) also analyzed levels of dynorphin, an opioid receptor 

agonist, in the striatum and found they were significantly elevated following seven day 

treatment with MPH. Increases in dynorphin expression are considered to be a 

neuroadaptive process related to overstimulation of D 1-R's. Attenuation of cTfos and 

zip68 is also considered a neuroadaptive process that is mediated by Dl-R's (Brandon & 

Steiner, 2003). 

In another study MPH administration was shown to have lasting effects on cTfos 

expression 14 days following treatment. Levels of cfos in the striatum were significantly 

increased following administration of a single dose of either 2mgIkg or 10mgIkg MPH 

when measured 14 days later (Chase et al.', 2003). 

MPH-Induced Changes in Neuvochemistry 

Presynaptic DA-containing neurons release DA following a nerve impulse as well 

as in a continuous non-pulsatile manner in between nerve impulses. The tonic level of 

DA represents the existing amount of DA within the synapse whereas the phasic release 

is the amount of DA released following a nerve impulse (Grace, 1995). The DA system 

has several safeguards to prevent toxic build up of DA within the synapse, they are: rapid 

diffusion of DA from the synapse, reuptake of DA by the DAT, and inhibition of 

additional DA release by stimulating the DA autoreceptors on the presynaptic neuron. 

The amount of DA that occupies the synapse in between nerve impulses is 4nM. 
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Following a nerve impulse, extracellular DA levels rise to 250nM although these levels 

return to normal resting levels within milliseconds. This is primarily due to the rapid 

diffusion of DA but it is also attributed to the action of the DAT. Tonic levels of DA are 

elevated following administration of MPH to approximately 24nM. The increase in 

synaptic DA concentration causes increased activation of the presynaptic D2-R thereby 

reducing the impulse triggered release of DA to approximately 50nM. The change in 

presynaptic DA release is hypothesized to attenuate the number or function of 

postsynaptic DA receptors (Seeman & Madras, 2002). Postsynaptic receptor activity is 

believed to be regulated by the amount of difference between the tonic levels of DA 

compared to the phasic release of DA. 

There have been no deleterious effects associated with long-term usage of MPH. 

However, some pre-clinical studies have indicated lasting changes in neurochemistry 

following treatment with MPH. When MPH was administered to adolescent rats, there 

were alterations in the activity of their midbrain neurons (Brandon, Martinelli, & White, 

2003). Extracellular recordings were taken in four-week-old rats to determine if low 

doses of MPH administered in adolescence would alter DA neuronal activity in young 

adulthood. In this study the rats were administered 2.0mgikg MPH i.p. for 7 days. These 

rats were divided into two groups. The first was a 1-3 day withdrawal group and the 

second was a 14-2 1 day withdrawal group. Measurements were made in the ventral 

tegmental area (VTA). Rats in the 1-3 day withdrawal group had significantly more 

spikes emitted in bursts and an increase in burst events. The 14-21 day withdrawal group 

showed a decrease in the average number of spikes emitted per burst and an increase in 
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the interspike intervals (Brandon et al., 2003). The study findings indicate DA levels are 

decreased in the VTA following short-term (sub-acute) administration of MPH. Reduced 

functioning in the VTA can result in deficits in social emotional processing, emotional 

blunting, lack of motivation, and anhedonia (UCSF website). In another study, Spronson 

and colleagues (2001) treated rats with 4mglkg i.p. MPH twice daily for 4 days. This 

acute treatment did not produce behavioral dysfunction or long-term alteration in social 

interaction. However striatal sections examined on post treatment day 18 showed 

decreased presynaptic striatal dopamine release (Sproson, Chantrey, Hollis, Marsden, & 

Fonel, 200 1). 

Another study using sub-acute administration of MPH determined DAT density in 

the striatum was significantly reduced after early MPH administration in rats. Following 

termination of treatment with MPH, ligand-binding assay studies showed a reduction in 

dopamine transporter density by 25% at day 45 post treatment. This decline reached 

almost 50% at adulthood (day 70). This study indicates the presence of long-term 

changes in the central dopaminergic system following treatment with MPH during early 

juvenile life (Moll, Hause, Ruther, Rotherberger, & Huether, 2001). 

Bolafios and colleagues treated adolescent rats with 2mg/kg MPH twice a day 

from postnatal day 20-35. Following treatment, the rats were left undisturbed until 

postnatal day 90 when behavior was assessed in relation to emotional stimuli. Rats 

pretreated with MPH were more sensitive to aversive stimuli as assessed by swim stress 

and anxiogenic challenges. Conversely, pretreated rats had less sensitivity to the 

naturally rewarding effects of sucrose. These rats were also less active when placed in a 
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novel environment compared to untreated animals, and demonstrated deficits in initiation 

and performance of sexual behavior. This study indicates that MPH treatment in 

adolescence alters DA functioning in the striatum and mesolimbic brain regions (Bolafios 

et al., 2003). 

Study Rationale 

Dose Selection 

In humans, therapeutic concentrations of MPH are reached when plasma levels 

are between 8-10 nglml (Swanson & Volkow, 2002). These levels are typically reached 

within 1 to 1.5 hours following MPH administration. The half-life of MPH is 

approximately 2 to 3 hours (Volkow,Fowler, Ding, et al., 1998; Volkow, Wang, Fowler, 

et al., 1998; Wargin, Patrick, Kilts, Gualtieri, Ellington, et al., 1983). This is in contrast 

to MPH's effects in rats. The length of time plasma levels are maintained at clinically 

therapeutic levels in rats is significantly shorter (1.4-25 nglml at 15 min) compared to 

humans, and at 30 minutes are almost undetectable (0-4 nglml) (Gerasimov, Franceschi, 

Volkow, Gifford, Gatley, et al., 2000). In the rat a low dose of MPH (lmglkg) 

administered orally results in peak plasma concentrations of 40nglml at 10 minutes post- 

administration. This level sharply drops to 1 5ngIml within 5 minutes. This dose of MPH 

is not sufficient to produce significant elevations in DA concentrations within the brain 

regions known to be affected by MPH treatment. 

Determining an appropriate dose level of MPH for the rat that is comparable to 

what is used clinically for humans is challenging. Depending on the route of 

administration (i.e. intravenous, intraperitoneal, oral) plasma levels can be significantly 



www.manaraa.com

4 5 

affected. Plasma concentrations of MPH and its metabolites are often used to determine 

equivalent doses. However, it has been suggested by Gerasimov and colleagues (2000) 

that using human peak plasma concentrations to determine clinically relevant doses of 

MPH for the rat may not be appropriate. Differences in plasma concentrations of MPH 

between rats and humans is dependant upon several factors including the route of 

administration, volume of drug distribution, drug metabolism, and excretion rates 

(Wargin et al., 1983; Patrick, Ellington, & Breese, 1984; Mordenti, 1986). 

Experiment 1: Chronic MPH 

Hypothesis. Chronic pre-injury treatment with MPH will exacerbate cognitive 

deficits following experimental lateral FP injury. These deficits are related to changes in 

D2-R f~~nctioning or expression resulting from chronic treatment with MPH. The impact 

of these effects will be most evident in the chronic phase following brain trauma. 

Rationale. Based on the findings from Brandon and colleagues (2003), increased 

release of DA following MPH treatment coincides with the acute elevation of DA levels 

associated with the excitotoxic phase following experimental TBI. It has also been 

shown that MPH treatment and experimental TBI are associated with chronic decreases 

in DAT functioning in the striatum and frontal cortex (Yan et al., 2002). The availability 

of the DAT for efficient and expeditious removal of DA is essential for cell signaling as 

well as maintaining dopamine homeostasis. Impaired functioning of the DAT may cause 

alterations in the availability of presynaptic D2-R's. Based on the hypothesis proposed 

by Seeman and Madras (1998), the drug induced decrease in impulse triggered release of 

DA caused by the activation of presynaptic D2-R's may attenuate the responsiveness of 
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the postsynaptic neuron. The drug induced changes in DA receptors may further impair 

activity of the Dl-R and R2-R leading to further cognitive impairment in the chronic 

phase following TBI. Therefore, the working hypothesis of the present study is that 

chronic pre-treatment with MPH will upregulate pre-synaptic D2-R functioning and 

down-regulate postsynaptic DA functioning thereby exacerbating the hypofunctionality 

of the DA system following TBI and contribute to poor cognitive outcome. 

Dose selection. Oral administration of Smglkg MPH is reported by Gerasimov et 

al., (2000) to be the upper end of clinically relevant doses. In humans, MPH is 

therapeutic because of its sustained effects in the CNS. Due to the shorter half-life in 

rats, 1.5 to 2 hours, compared to humans, 2 to 3 hours, MPH was administered via oral 

gavage twice daily spaced approximately 3 hours apart. Spacing the doses at lease 3 

hours apart ensured that the first dose was not exerting any pharmacological effects. This 

adjusted the daily drug exposure of the rats so it more closely approximates clinical 

administration (Kuczenski & Segal, 2002). 

Experiment 2: Acute MPH 

Hypothesis. A bolus injection of MPH 25-30 min prior to experimental lateral FP 

injury will impair cognitive recovery post-injury. MPH is able to increase levels of DA 

in brain regions known to be vulnerable to TBI. The increased activity of DA will 

contribute to and exacerbate the excitotoxic neuronal cascade in the acute phase 

following injury. This will lead to greater deficits in the chronic phase post-injury. 

Rationale. The chronic study was designed to investigate the potential effects of 

chronic MPH pre-treatment on DA receptors. The rationale for the acute study is to 
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assess what effects MPH may have in the absence of long-term receptor modulation. For 

the purposes of determining if an acute treatment is capable of producing a measurable 

effect, it is necessary to utilize a larger dose to maximize the drug treatment effects. The 

purpose of this study is to evaluate the effect of a bolus injection of MPH on cognitive 

outcome following TBI. 

Dose selection. Because only one dose level was used in this study, it was 

necessary to maximize any effects MPH has on TBI outcome. In the rat higher doses of 

MPH (1 Omglkg) have a longer half-life compared to moderate doses of MPH (5mglkg) 

(Gerasimov et al., 2000). Based on studies of ADHD, beneficial treatment outcome 

requires that the drug be active over sustained periods of time in the CNS. Due to the 

short action of MPH in the rat a large dose with longer activity would fit best with 

clinical use MPH. The length of time MPH remains pharmacologically active following 

treatment with 10mgIkg MPH (3-4 hours) is a closer approximation of the 

pharmacological activity in humans (4-6 hours). The drawback of using the higher dose 

is the relative difference in clinically observed plasma concentrations in humans (8- 

10nglml) and plasma levels in rats at 3 hours (40nglml) (Wargin et al., 1983). Although, 

as stated in the above section on dose selection, plasma concentrations may not be the 

best way to determine appropriate doses (Gerasimov et al., 2000). 
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Methods 

General Methodology 

The description of the subjects below provides general information. Study 

specific descriptions of the subjects will be addressed under that experiment's heading. 

The descriptions of the surgical preparation, FP injury device and injury procedure, 

neurological assessment, Morris Water Maze (MWM), and statistical analysis are 

identical for experiment 1 and experiment 2. Any further information related to 

experiment 1 or 2 will be provided under those headings. 

Subjects 

Male Sprague-Dawley rats (Hilltop Lab Animals, Inc., Scottsdale, PA) were used 

in both the chronic and acute studies. The rats were individually housed in a vivarium 

and their environment was maintained at 22OC in a 12-h dark-light cycle. The animals 

were allowed free access to food and water in their home cages. All protocols for injury 

and use of animals followed the guidelines established in the Guide for the Care and Use 

of Laboratory Animals (U.S. Department of Health and Human Services) and were 

approved by Virginia Commonwealth University's Institutional Animal Care and Use 

Committee. 
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Surgical Preparation 

Rats were anesthetized with 4% Isoflourane with 70% N20 :  30% O2 mixture for 4 

minutes and placed in a stereotaxic frame. The scalp was sagittally incised and a 4.8- 

mm-diameter lateral craniotomy was made to the right of the sagittal suture between the 

coronal and lambdoid sutures. Two nickel-plated screws were placed 1 mm rostra1 to 

bregma on the ipsilateral side of the craniotomy and 1 mm caudal of the lambdoid suture 

on the contralateral side of the craniotomy. A Leur-Loc syringe hub was secured on the 

skull at the site of the craniotomy with cyanoacrylate. This ensured a watertight seal that 

was necessary for accurate interpretation of the atmospheres of pressure generated by the 

FP injury device. Dental acrylic was then applied around the syringe hub and the two 

screws to secure the hub. The scalp was then sutured and Bacitracin was applied to the 

surgical site. Each subject was monitored for full recovery from anesthesia before they 

were returned to their home cage. 

Fluid Percussion Injury Device 

The FP device used to produce experimental TBI was identical to that described 

in detail by Dixon et al., 1987. Figure 1 shows an image of the injury device. The device 

consisted of a 60-cm-long and 4.5 cm diameter Plexiglas cylinder with a rubber-covered 

0 ring-fitted Plexiglas piston at one end and, on the opposite end of the cylinder, a 2-cm- 

long metal housing mounted with an extracranial pressure transducer (Entran Devices, 

Inc., Model EPN-0300"-100A). This metal housing attaches to a 5-mm tube with a 2.6 

mm inner diameter that ends with a male Leur-Loc fitting. This fitting connects with the 

surgically implanted female Leur-Loc fitting at the time of injury. The entire system is 

then filled with distilled water. The injury is produced by releasing a metal pendulum 
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positioned to strike the piston of the injury device. A small volume of distilled water is 

injected into the closed cranial cavity to produce a brief displacement and deformation of 

brain tissue. The magnitude of injury is controlled by varying the height from which the 

pendulum is released. 
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Figure 1. Fluid percussion injury device used to produce the moderate level lateral 

injury. 
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Fluid Percussion Injury 

Twenty-four hours after surgical preparation, at the time of injury, the rats were 

anesthetized by breathing 4.0% isoflurane with 70% N20:30% O2 mixture for 4 min. The 

surgical site was exposed and the animal was connected to the FP device. The force of 

the injury administered was between 2.0 to 2.2 atmospheres of pressure (atm), which is 

equivalent to a moderate-level brain injury. The atm's were recorded by the in-line 

transducer connected to a storage oscilloscope (~ektronix 5 11 1; Beaverton, OR). Sham- 

injured controls received the same surgical preparation, anesthesia, and connection to the 

injury device; however, no injury was delivered. All animals were immediately 

ventilated with room air until spontaneous breathing was resumed. 

Outcome Assessment 

Neurological assessment. Following the injury during the period of 

unconsciousness, the scalp was sutured closed and neurological assessment was 

performed based on suppression of the rats' reflexes. The injured rats were tested for 

suppression of the righting reflex. Once the rat regained consciousness it was monitored 

for 2-3 h before being returned to its home cage. 

Morris water maze. The maze is a large circular tank (1 80 cm diameter by 45 cm 

high) filled to a depth of 30 cm with thermostatically controlled warm water maintained 

between 25" and 28" C. Figure 2 is an image of the Morris water maze and tracking 

system. For assessment, rats were given four trials per day for 5 consecutive days on 

post-injury days (PID) 10 to 14 post-injury. For each daily block of four trials the rats 

were placed in the tank facing the wall at one of the four designated entry points. The 

order of the entry points was randomized to minimize practice effects. Each rat started 
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the trials once from each of the four cardinal directions (north, east, south, and west) in 

random order. The hidden goal platform was positioned 45 cm from the outside wall and 

was not moved during the experiment. Rats were given a maximum of 120 seconds to 

find the hidden platform. If the rat failed to find the platform within the allotted time it 

was placed on the platform by the experimenter. All rats remained on the platform for 30 

seconds before being placed in a heated incubator between trials. The inter-trial interval 

for all the trials was approximately 10 minutes. 

The MWM tests the ability of the rat to utilize reference memory for spatial 

learning and memory (Morris, Garrud, Rawlins, & O'Keefe, 1982). There are several 

advantages for using the MWM. It is known to be sensitive to hippocampal damage 

(Morris et al., 1982). The water maze is relatively quick and easy to learn for rats and 

food does not have to be withheld for the acquisition of this task. Maze performance was 

assessed on PID 10-14. This timeframe was selected because any motor deficits 

produced by the injury have subsided and TBI-induced cognitive deficits are larger, thus 

making any drug effects more apparent (Hamm et al., 1993). 
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Figure 2. Cartoon of the Morris water Maze and tracking system. 
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Statistical Analysis 

Separate one-way ANOVA's were used to analyze swim speeds and righting 

times. In both the chronic and acute study the analysis of suppression of the righting 

reflex includes only the comparison of the two injured groups for each study. Although 

no formal analysis was performed on the sham groups, all animals in those groups 

regained the righting reflex in less than 2 min. Righting times of less than 2 minutes was 

significantly faster compared to the injured groups. A split-plot analysis of variance 

(ANOVA) was performed on goal latencies in the MWM. The within-subjects variable 

was the days assessed in the water maze (PID 10-14) and the between-subjects factor was 

treatment condition (group). A one-way ANOVA was performed for each day of testing 

in the MWM. The between-subjects factor in the day by day analysis was the treatment 

condition (group). Post-hoc analyses were made where appropriate using a Student- 

Newman-Keuls (S-N-K) test. All statistical analyses were performed using SPSS 

software, alpha = .05. 

Experiment I :  Chronic MPH 

Methods 

Subjects. General descriptions of the rats and their environment are detailed 

above. Litters of male Sprague-Dawley rats were obtained with their dams on postnatal 

day 18. Prior to the start day for treatment (postnatal day 28) the rats were weaned and 

housed 2-3lcage. Animals began treatment with either saline or MPH on postnatal day 

28. The age of the rats was selected to better mimic the treatment modality utilized in the 

clinical treatment of children diagnosed with ADHD (Kuczenski & Segal, 2002). 

Postnatal day 20-35 in rats developmentally approximates preadolescence in humans 
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(Andersen, Arvanitogiannis, Pliakas, LeBlanc, & Carlezon, 2002a; Prins & Hovda, 1998; 

Prins, Lee, Cheng, Becker, & Hovda, 1996). Twenty-eight-day-old rats are comparable 

developmentally to elementary school aged children, which is the average developmental 

period that a child diagnosed with ADHD would likely begin treatment. 

Drugpreparation. MPH HC1 was obtained through the Pharmacology & 

Toxicology Department at Virginia Commonwealth University as well as through U.S. 

Pharmacopeia (Rockville, MD). The MPH HC1 was dissolved in 0.9% sterile saline. The 

volume of drug solution administered to the rats was 2mllkg. The 5mgIkg dose was 

calculated for weight in increments of 5 grams. The concentration of the prepared 

solution was selected to decrease the injection volume in the young rats. 

Chronic MPHpre-treatment. -Prior to the drug administration the rats were 

sedated under gas anesthesia (4% Isoflurane) in a mixture of 70% N20,  and 30% 0 2  for 

1-2 minutes. This was done to minimize discomfort and prevent injury to the rats caused 

by contraction of esophageal and abdominal muscles around the gavage needle; this was 

a particular concern in the younger (smaller) rats. Methylphenidate HCl(5mglkg) 

dissolved in 9% saline or equivalent dose of 9% saline was delivered via an 18-guage 

oral gavage passed down the esophagus into the stomach. Treatment with MPH began on 

postnatal day 28. Male Sprague-Dawley rats were initially randomly assigned to either 

vehicle (saline) or drug treated (MPH 5mgIkg) groups. All rats were treated chronically 

for 30 days twice a day with MPH or saline. A minimum delay of 3 hours and a maximal 

delay of 6 hours were maintained between the first and second doses each day. The 

minimum delay protected against compounding effects of the treatments. The maximal 

delay was established to more closely match clinical treatments. 
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Surgicalpreparation. On treatment-day 29 all rats in the chronic study 

underwent the surgical preparation outlined in the general methodology section above. 

Treatments administered on this day were scheduled such that there was a 3-hour delay 

between the first treatment dose and initiation of the pre-injury surgical preparation. 

Following surgical preparation (average length of surgery was approximately 30min) the 

rat was allowed to recover for 2 hours before administration of the second treatment dose. 

Injury. Upon completion of the 30-day pre-injury dosing regimen rats were 

randomly assigned to one of 4 treatment groups: MPH + injury, MPH + sham-injury, 

saline + injury or saline + sham-injury. At the time of injury the rats were 58-days old. 

Rats assigned to one of the two injury groups received a moderate level lateral FP injury. 

Rats assigned to either of the sham-injury groups received identical treatment except no 

injury was delivered. The final dose of MPH was administered at least 3 hours prior to 

lateral FP or sham injury. The delay between drug administration and time of injury 

allowed the MPH to be systemically cleared. 

Experiment 2: Acute Study 

Methods 

Subjects. Adult (3-month old) male Sprague-Dawley rats weighing 290-3308 

were used in this experiment. Information regarding housing and environmental 

conditions is located in the general methodology section. 

Drug preparation. MPH HCl was obtained through the Medical College of 

Virginia's Pharmacology & Toxicology Department at Virginia Commonwealth 

University as well as through U.S. Pharmacopeia (Rockville, MD). The MPH HC1 was 

mixed with 0.9% sterile saline in and administered in a volume of 2mllkg. The same 
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dosing chart calculated for use in the chronic study (5mglkg) was also used to calculate 

the required dose in the acute study (1 Omglkg). Drug injection volumes determined by 

the individual weight of each rat were doubled to attain the 10mglkg dose. Due to the 

larger size of the rats and the dose regimen of a single bolus injection, there was no need 

to make the drug more concentrated as was necessary for the chronic study. 

Acute MPHpre-treatment. Prior to the drug administration the rats were sedated 

under gas anesthesia (4% Isoflurane) in a mixture of 70% N20,  and 30% 0 2  for 1-2 

minutes. This was done to minimize discomfort and prevent injury to the rats caused by 

contraction of esophageal and abdominal muscles around the gavage needle. A bolus 

injection of MPH HCl(10mglkg) dissolved in 0.9% sterile saline or equivalent dose of 

0.9% sterile saline was delivered via oral gavage passed down the esophagus into the 

stomach. The rats were randomly assigned to one of 4 treatment conditions: MPH + 

injury, MPH + sham-injury, saline + injury, or saline + sham-injury. MPH or saline was 

administered approximately 25-30 minutes prior to sham or lateral FP injury. The 

selected time interval allowed peak plasma levels to coincide with the time of injury 

thereby maximizing the effects of MPH treatment on TBI outcome. 



www.manaraa.com

Results 

Experiment I :  Chronic Study 

Outcome Measures 

Neurological assessment. Figure 3 shows the mean suppression of the righting 

reflex (in minutes) following lateral FP injury. A one-way ANOVA was used to 

determine if there were differences in the suppression of the righting reflex between the 

two injured groups (MPH + injury and saline + injury). There were no significant 

differences in the righting times of these groups F(1,21) = .909, p > .05. This indicates 

that the injury severity was comparable for both injured groups. 

Swim speed analysis. Figure 4 shows the mean swim speeds (cmlsec), averaged 

across days, for each treatment group. A one-way ANOVA indicated there was no 

significant effect of treatment group on average swim speed in the MWM, F(3,45) = 

.426, p > .05). This indicates that all the groups swam at similar speeds during the 

assessments in the MWM. 

Cognitive assessment. Figure 5 shows the mean latency (in seconds) to reach the 

goal platform in the MWM on PID 10-14, for all groups. A 4 (Group) X 5 (Day) split- 

plot analysis of variance (ANOVA) indicated there was a significant effect of treatment 

condition on MWM performance, F( 3,45) = 8.3 13 p < .001. A S-N-K post hoc analysis 

was performed to assess specific group differences. The results indicated that there was a 

significant difference between the injured and sham-injured groups (p < .05). No 

6 1 
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significant differences were detected between the MPH + injury and saline + injury 

groups (p > .05). No significant difference was found between the MPH + sham-injury 

and saline + sham-injury groups (p > .05). 

Figure 6 shows the day by day comparison of MWM performance by treatment 

group. Analysis of the mean latency to reach the goal platform for each day was 

calculated using a one-way ANOVA with the treatment group as the independent 

variable. The ANOVA revealed a significant difference in the day by day analysis for 

each treatment group. For each day there was a significant effect of group Day 1, 

F(3,45) =4.855, p < .001; Day2, F(3,45) = 7.804, p < ,001; Day 3, F(3,45)= 4.921, p < 

.01; Day 4, F(3,45) = 4.834, p < .01; Day 5 F(3,45) = 3.784, p < .05. A S-N-K analysis 

confirmed the results from the group by day split-plot ANOVA reported above. The only 

significant differences were found between the injured and sham-injured groups (p < .05). 
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Figure 3. Chronic Study: Analysis of Injured Groups Righting Reflex. Comparison of 

chronic pre-treated injured groups showed there was no significant effect of lateral FP 

injury on suppression of the righting reflex (p > .05). The vertical bars represent the two 

injured groups and the vertical lines represent standard error of the mean. 
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Figure 4. Chronic Study: Mean Swim Speed Analysis. There was no significant effect of 

pre-injury treatment on swim speed (p > .05). The vertical bars represent the four 

treatment conditions and the vertical lines represent the standard error of the mean. 
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Figure 5. Chronic Study: M W M  Latency. Separate horizontal lines represent the 

different treatment conditions. There was a significant difference between the latencies 

of the sham and injured groups (p < .05). There was no significant difference between 

the chronic MPH and chronic saline injured groups (p < .05). There was no significant 

difference between the chronic MPH and chronic saline sham-injured groups (p > .05). 

The vertical lines represent the standard error of the mean. 
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Figure 6. Chronic Study: Day by Day Analysis of Mean Latencies in the MWM. The 

vertical bars represent the different treatment conditions; vertical lines represent the 

standard error of the mean. Significant differences between the groups are marked with a 

star. 
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Experiment 2: Acute Study 

Outcome Measures 

Neurological assessment. Figure 7 shows the mean righting reflex of the injured 

groups (in minutes) following lateral FP injury. A one-way ANOVA was used to assess 

differences in suppression of the righting reflex between the two injured groups (MPH + 

injury and saline + injury) following lateral FP injury. No significant effect was observed 

between the groups F(1,21) = .376, p > .05. This indicates there was no effect of acute 

pre-injury treatment on injury severity. 

Swim speed analysis. Figure 8 shows the mean swim speed (crnlsec), calculated 

for each treatment group, across days in the MWM. A one-way ANOVA indicates there 

was no significant difference in the swim speeds across 

groups F(3,29) = 1.351, p > .05. This indicates that all the groups swam at similar speeds 

during the assessments in the MWM. 

Cognitive assessment. Figure 9 shows the mean latency (in seconds) to reach the 

goal platform in the MWM on PID 10-14. A 4 (Group) X 5(Day) split-plot ANOVA 

indicated there was a significant effect for group F(3,35) = 11.24, p < .001. A S-N-K 

post hoc analysis was performed to assess specific group differences. There were no 

significant differences found between the MPH + sham-injury and saline + sham-injury 

groups (p > .05). The MPH + injury group had significantly shorter latencies to the goal 

platform in the MWM compared to the saline + injury group (p < .05). However, the 

MPH + injury group did not improve to sham levels and had significantly longer 

latencies to reach the goal platform (p < .05). The saline + injury group had the poorest 

performance in the MWM and was statistically different from all other treatment groups 



www.manaraa.com

7 2 
(p < .05). This indicates that acute pre-injury treatment with MPH offers some cognitive 

protection. 

Figure 10 shows the day by day analysis of MWM latencies (in seconds) for each 

treatment group. Analysis of the mean latency to reach the goal platform for each day 

was calculated using a one-way ANOVA with the treatment group as the independent 

variable. The ANOVA revealed a significant difference in the day by day analysis for 

each treatment group. For each day there was a significant effect of group Day 1, F(3,38) 

= 4.147, p < .05; Day 2, F(3,38) = 5.175, p < .Ol; Day 3, F(3,38) = 7.169, p < .Ol; Day 

4, F(3,38) = 5.635, p < .O1; Day 5, F(3,38) = 10.335, p < .001. A S-N-K analysis 

indicated that on days 4 and 5 in the MWM (PID 13 and 14) that rats in the MPH treated 

+ injured group reached sham levels of performance based on latencies to the goal 

platform. On days assessment days 1 though 3 in the MWM the only significant 

differences in latencies to the goal platform were found between the injured and sham- 

injured groups (p < .05). 
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Figure 7. Acute Study: Suppression of Righting Reflex. This figure shows the effect of 

lateral fluid percussion injury on suppression of the righting reflex. Pre-treatment with 

MPH did not affect the righting times of the injured groups (p > .05). 



www.manaraa.com

Acute MPH 
Injured 

Group 

Acute Saline 
Injured 



www.manaraa.com

Figure 8. Acute Study: Mean Swim Speed Analysis. Pre-injury treatment with MPH had 

no significant effect on swim speed in the Morris water maze (p > .05). 
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Figure 9. Acute Study: MWM Latency. Separate horizontal lines represent the four 

different treatment conditions. There was a significant difference between the latencies 

of the sham and injured groups (p < .05). There was significant difference between the 

acute MPH and acute saline injured groups (p < .05). No significant difference was 

observed between the two sham-injured groups (p > .05). The vertical lines represent the 

standard error of the mean. 
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Figure 10. Acute Study: Day by Day Analysis of Mean Latencies in the MWM. The 

vertical bars represent the different treatment conditions; vertical lines represent the 

standard error of the mean. Significant differences between the groups are marked with a 

star. 
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Discussion 

Experiment 1: Chronic Study 

Effects of Chronic Pre-Injuuy MPH Treatment 

The results of the chronic study indicate that prolonged treatment with MPH had 

no effect on any of the outcome measures. Analysis of the suppression of the righting 

reflex indicated that chronic pre-injury treatment with either MPH or saline had no effect 

on injury severity. Analysis of the swim speeds showed there was no significant 

difference between any of the groups. This finding is supported by the MWM data. No 

significant differences were found in MWM performance between the two injured groups 

(MPH + injury and saline + injury). Similarly, no significant differences were found 

between the two sham-injured groups (MPH + sham-injury and saline + sham-injury). 

The only significant difference observed was between the injured and sham-injured 

groups. This finding was supported by the day by day analysis. These results indicate 

that the cognitive deficits, assessed by MWM performance, were due to injury effects; 

not pre-injury treatment with MPH. These findings do not support the main hypothesis 

that chronic pre-injury treatment with MPH would exacerbate cognitive deficits 

following TBI. 

Clinical Implications 

There have been no studies, clinical or pre-clinical, to date that have evaluated the 

potential interaction between chronic treatment with stimulant medication and cognitive 
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recovery following TBI. The current study used a rodent model to evaluate any 

consequences of chronic MPH administration on recovery of cognitive functioning 

following experimental TBI. It was shown that chronic pre-injury administration of 

MPH had no impact on cognitive outcome measures. This was found in both the injured 

and sham-injured groups. These data do indicate that chronic MPH treatment in humans 

is unlikely to impact cognitive outcome after TBI. 

Experiment 2: Acute Study 

Effects of Acute Pre-Injury MPH Treatment 

There was no significant difference in suppression of the righting reflex between 

the MPH and saline injured rats; meaning the injury severity was comparable in both 

groups. This indicates that the improvements in cognitive recovery were not related to 

differences in the severity of TBI. Analysis of swim speed across days for all the groups 

did not show any significant differences in the average swim speeds. This indicates that 

the latency to locate the goal platform was not affected by motor impairments. Similar 

swim speeds for all the groups also indicates that the amount of time required to locate 

the goal platform is due to learning rather than accidentally locating the platform due to 

faster exploration of the maze. 

Lateral FP injury, following either 10mgIkg MPH or saline, significantly impaired 

overall performance in the MWM. However, contrary to what was anticipated, rats that 

received pre-injury treatment with MPH performed significantly better than rats receiving 

pre-injury treatment with saline. Despite the improvement over the saline + injury group, 

the MPH + injury group did not perform as well as either of the treatment + sham-injury 

groups. 
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The day by day analysis indicated that rats in the MPH + injury group did not 

perform at sham levels for the first three days of testing in the MWM. It was not until the 

fourth and fifth days of testing that the rats in the MPH + injury group reached sham 

levels of performance. This indicates that the rats in the MPH + injury group did not 

learn the maze task as quickly as the treatment + sham-injury groups however, by day 

four in the MWM they are performing at sham levels. 

Results from this study did not support the hypothesis that acute pre-injury 

treatment with MPH would exacerbate cognitive deficits following moderate level FP 

injury. It was anticipated that the stimulant properties of MPH would facilitate trauma- 

induced neural excitotoxicity in the acute phase following brain injury. However, 

cognitive performance was improved in the MPH + injury group as compared to the 

saline + injury group. This finding indicates that a high dose of MPH administered prior 

to traumatic brain injury offers some neuroprotection. This is presumed to occur via 

pathways involved in both MPH treatment and injury. Based on what is known about the 

action of MPH in the brain and the processes and pathways that are involved in the 

sequelae of TBI there are several potential explanations for the observed effects. 

Potential Mechanisms for Acute Treatment Benefits 

One explanation for the improvement in MWM performance by the MPH treated 

injured group could be attributed to vasopressor effects related to MPH's ability to 

increase DA levels in the brain. FP injury has been shown to produce transient 

alterations in cerebral blood flow. It was observed that within seconds of administering a 

moderate severity level lateral FP injury there was a brief period of hypertension (Muir, 

Boerschel, & Ellis, 1992). When measurements were taken again at 5 minutes post- 
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injury there was a significant decrease in blood flow that persisted for at least 60 minutes 

post-injury (Long, Gordon, Bettencourt, & Bolt, 1996; Muir et al., 1992). 

There are varied reports from studies that have examined the effects of MPH on 

cerebral blood flow (Kim et al., 2001; Mehta et al., 2000; Schweitzer et al., 2004; Szobot 

et al., 2003). These studies with the exception of Schweitzer et al., (2004) showed that 

MPH treatment reduced rCBF. In the article by Muir et al., (1992) it is speculated that 

the reduction in blood flow following TBI may be due to the initial acute hypertensive 

event. Using a laser-Doppler flowmetry, Muir and colleagues showed that after a 

moderate-severity FP injury there was a transient 225% increase in parietal cortex blood 

flow. The change in parietal blood flow occurred seconds after mABP was increased to 

294%. It is reported that this may be one of the initial insults on the cerebral vasculature 

(Muir et al., 1992). It is possible that reducing blood flow immediately prior to the 

hypertensive period may lessen some of the damage to the cerebral vasculature. 

A second potential explanation for the improvement in cognitive 

could be attributed to MPH's effects on glucose metabolism in the brain (Volkow et al., 

1998a & (Volkow, Fowler, Ding, et al., 1998); Kim et al., 2001; Lou et al., 1984). 

Glucose levels are also affected by injury. Clinical reports and experimental models both 

report elevated cerebral metabolism within the first 30 minutes post-injury (Long et al., 

1996; Povlishock & Katz, 2005). The observed hypermetabolism is likely the result of 

impaired ionic homeostasis and mitochondria1 dysfunction and is reported to be 

indicative of an energy crisis/metabolic dysfunction (Povlishock & Katz, 2005; Vespa, 

McArthur, Alger, O'Phelan, Hattori et al., 2004). Brain metabolism as measured by 
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glucose levels are initially elevated after TBI but are then followed by persistent 

reductions in brain metabolism. This is the basic premise of the biphasic hypothesis. 

In the study by Volkow, Fowler, Ding, et al., (1998) a single dose of MPH was 

administered to determine the effect of MPH on glucose metabolism in the brain. It was 

found that a single dose of MPH decreased metabolism in the frontal, parietal, and 

occipital cortices and in the hippocampus (Volkow, Fowler, Ding, et a]., 1998). TBI is 

known to disrupt glucose metabolism in the brain. In the acute phase, immediately 

following injury, rapid elevation of glucose levels has been linked to metabolic 

dysfunction that can ultimately lead to cell death (Povlishock & Katz, 2005). The ability 

of a single dose of MPH to cause short-tern decreases in brain metabolism could 

contribute to improved cognitive outcome. 

Another possible explanation for the cognitive improvements could be attributed 

to similar actions caused by other DA agonists. DA receptor agonists specifically D2-R 

agonists such as bromocriptine, cabergoline, pergolide, DEHCP, and ropinirole were 

found to be neuroprotective when administered for seven days prior to hypobaric hypoxic 

injury (Micale et al., 2006). Additionally, bromocriptine administered 15-minutes prior 

to injury was also beneficial in reducing cognitive deficits (Kline et a]., 2004). It is 

believed that the beneficial effects of these drugs are due to their antioxidant effects. It is 

suggested that treatment with dopaminergic drugs is beneficial because these drugs are 

known to increase the reductiodoxidation ratio within brain tissue following an injury 

(Micale et al., 2006). It is suggested that the activity of the ergot-derived drugs as well as 

ropinirole increase the amount of circulating antioxidants in the injured brain via their 

action at D2-R's (Medico et al., 2002; Micale et a]., 2006). Although, MPH does not 
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solely activate D2-R's, it is possible that MPH-induced increases in DA could increase 

cerebral anti-oxidative enzymatic activity. The increased levels of antioxidants might be 

able to prevent damage caused by injury-induced elevations in free radicals. 

Future Studies 

Further research is needed to determine what mechanism or action of MPH is 

involved in acute TBI pathology. Based on the findings from the acute study, future 

studies are needed to determine if therapeutic doses of MPH have similar effects. 

Although the chronic study did not yield significant results there is room for further 

study. The current studies employed a single treatment dose. Future research could 

evaluate other dose levels of MPH in relation to TBI. Another area that warrants further 

examination is the dosing pattern of the chronic study. In the chronic study the final dose 

of MPH was administered at least 3-hours prior to injury. Based on the positive results 

obtained from the acute study, it would be interesting to determine if there is any benefit 

to administerhg the final dose of MPH in the chronic study 25-30 minutes prior to the 

injury. Lastly, other ADHD medications should be evaluated in relation to the effects 

they may have on TBI recovery. 
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